首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the tributary monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes, focusing on the challenges faced by the agencies and organizations responsible for maintaining the network. The tributaries that are monitored vary in terms of flow, the size and terrain of the watershed being drained, and patterns of land use. Data generated by this network are used by researchers to compute lake-wide phosphorus loads. In this work, the primary drivers and challenges associated with operating an effective phosphorus tributary monitoring program were investigated through interviews with stakeholders responsible for managing a portion of the existing network. Based on these interviews, the authors identify three recommendations that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider. The first is to provide states with incentives to support the long-term monitoring that is required to estimate phosphorus loads in tributaries to the Great Lakes; currently, most states design their programs to meet the requirements of the Clean Water Act, which results in patterns of sampling that are not necessarily useful for computing loads. The second recommendation is to facilitate the creation of a monitoring protocol that generates enough samples to identify trends and quantify loads at a level of certainty necessary for use in statistical models and load control programs. Finally, funding mechanisms capable of supporting long-term monitoring programs need to be established, with programs in Michigan and Minnesota serving as potential models.  相似文献   

2.
Water quality data for trace elements in the Great Lakes are relatively scarce, complicating the assessment of current trace element baselines and their distribution patterns. Here, we present concentration data for >40 major and trace elements in >100 samples from the Great Lakes connecting channels, surface waters, precipitation and select Canadian tributaries, to establish a high-level assessment of loading rates across the basin. Contrasting upstream-to-downstream trends were observed for the investigated trace elements, ranging from net-decreasing (>5-fold for e.g., Co, Tl, Y) to net-increasing surface water concentrations (>2-fold for e.g., Sb, U, As). Calculated loading rates reveal different, element-specific controls of runoff, connecting channel loads or precipitation on trace element occurrence. Lake-wide elemental mass-balances could be reasonably closed for conservative trace elements (e.g., Li, <53% residual) but not for others (e.g., rare earth elements with up to 5-fold discrepancies), reflective of general data scarcity and uncertainty in loading rates. In line with major water quality trends, spatial distribution patterns in Lakes Erie and Ontario display subtle near-shore to off-shore heterogeneity for a few trace elements (<1 order-of-magnitude for V or Se), but higher variability for trace elements with significant inputs derived from tributaries. This work provides important quantitative baseline data for trace elements in the Great Lakes that may help optimize surveillance and management strategies for the preservation of Great Lakes water quality.  相似文献   

3.
It is important to routinely estimate loads from an entire watershed to describe current conditions and evaluate how watershed-wide management efforts have affected the nutrient and sediment export that affect downstream water quality. However, monitoring in most areas, including the Great Lakes watershed, consists of sampling at a limited number of sites that are only periodically used to estimate total watershed loading. Here, we describe a technique to extrapolate loads measured at a limited number of reference sites to the total load from a large watershed using load ratios between monitored sites and unmonitored areas obtained from a watershed model (i.e., model load ratio, MLR, approach). In this study, modeled nonpoint-source load ratios between monitored tributaries (reference sites) and nearby unmonitored areas and point-source delivery factors for all areas were obtained from a Spatially Referenced Regression On Watershed attributes (SPARROW) model and used to extrapolate the measured loads from an ongoing monitoring program (Great Lakes Restoration Initiative Tributary monitoring program) to the entire Great Lakes watershed. The MLR approach incorporates spatial variability in nonpoint- and point-source delivery, watershed characteristics, and hydrology that are often not considered when estimating loads from unmonitored areas, such as using the unit area load (UAL) extrapolation approach. The MLR approach provided smaller watershed loads than the UAL approach because yields from monitored sites, in general, were larger than from unmonitored areas. When both approaches were used to estimate loads at adjacent monitored sites, the MLR approach provided more accurate estimates than the UAL approach.  相似文献   

4.
Accurate estimates of total phosphorus (TP) loadings to eastern Lake Erie are critical for developing load reduction targets and for determining if commitments are being met under the Great Lakes Water Quality Agreement, 2012 (GLWQA). Currently, loading calculations from Canadian priority tributaries are supported by year-round event-focused water quality sampling using automated samplers and laboratory water quality measurements. Here we evaluate the suitability of continuously-measured parameters, namely turbidity and flow, to supplement or enhance knowledge about TP concentrations in the Grand River, ON, by providing continuous data alongside event-focused sample measurements. A series of simple and multiple linear regression models were evaluated and compared with respect to their ability to predict TP water concentrations as a function of different combinations of explanatory variables. Explanatory variables included turbidity, flow, season and flow condition (i.e. hysteresis). The models that performed best explained 63–65% of the variation of TP which is comparable to surrogate model applications in the U. S and elsewhere. Additional model calibration work is needed due to gaps in turbidity data particularly during high flow events. We emphasize the need for continued automated, event-focused water quality sampling. However, provided that operational challenges are overcome, our results indicate that sensor-derived water quality parameters to predict TP concentrations is a promising technique that may supplement and improve nutrient loading estimates in the Grand River into the future and provides guidance for the utilization of this method in other tributaries.  相似文献   

5.
The Great Lakes “Priority Watershed” effort targeted the Upper East River watershed, a 116.5-km2 tributary watershed to Wisconsin's Green Bay, to reduce its sediment and nutrients loads from agricultural sources. A Soil and Water Assessment Tool (SWAT) model was created to determine the effectiveness of agricultural Best Management Practices (BMPs) funded through the Great Lakes Restoration Initiative. The model was calibrated at the monthly time-step for flow, sediment, dissolved reactive phosphorus (DRP), total phosphorus (TP), nitrate, and total nitrogen (TN). Field- and watershed-scale sediment and nutrient reductions were calculated due to the implementation of 74 BMP combinations on dairy and cash grain rotations. Modeling results indicated that when multiple BMPs were placed on a field, especially those including filter strips and grassed waterways, sediment and nutrient loads generally were reduced more than single BMP implementation. The most effective in-field practice at reducing DRP and TP on dairy fields was a combination of 5 different BMPs: cover crops, crop rotation, nutrient management plan, reduced tillage, and a filter strip. Conservation cover was the single most effective practice at reducing sediment and nutrient yields. Sediment and nutrient loads decreased at the watershed scale as the quantity and coverage of BMPs increased. When all contracted BMPs were simulated at the watershed scale, sediment loads were reduced 2%, while TP, DRP, TN and nitrate loads were reduced 20%, 9%, 24%, and 17%, respectively. Modeling scenarios also indicated that over-winter manure storage was important to keep soluble nutrients out of waterways.  相似文献   

6.
Optimization, uncertainty analysis, and mass balance modeling techniques were combined into a framework that can help decision makers identify cost-effective load reduction methods for achieving acceptable contaminant concentrations in the Great Lakes. The utility of the framework is demonstrated by deriving an optimal phosphorus load reduction plan for the Great Lakes. An optimal plan is defined as the least-cost approach that can achieve desired phosphorus concentrations in all Great Lakes basins under realistic, stochastic phosphorus loading and settling rates. The analysis suggests that implementation of phosphorus load reduction measures recommended in the U. S. - Canadian 1978 Great Lakes Water Quality Agreement, its 1983 supplement, and other plans that do not account for environmental uncertainty may by sub-optimal. Compared with the load reduction strategies of the 1978 Water Quality Agreement and its supplement, implementation of the optimized load reduction strategy would lead to substantial annual cost savings and an increased probability of achieving desired phosphorus concentrations. Results emphasize the importance of quantitatively accounting for environmental uncertainty in management models.  相似文献   

7.
To support the 2012 Great Lakes Water Quality Agreement on reducing Lake Erie's phosphorus inputs, we integrated US and Canadian data to update and extend total phosphorus (TP) loads into and out of the St. Clair-Detroit River System for 1998–2016. The most significant changes were decreased loads from Lake Huron caused by mussel-induced oligotrophication of the lake, and decreased loads from upgraded Great Lakes Water Authority sewage treatment facilities in Detroit. By comparing Lake St. Clair inputs and outputs, we demonstrated that on average the lake retains 20% of its TP inputs. We also identified for the first time that loads from resuspended Lake Huron sediment were likely not always detected in US and Canadian monitoring programs due to mismatches in sampling and resuspension event frequencies, substantially underestimating the load. This additional load increased over time due to climate-induced decreases in Lake Huron ice cover and increases in winter storm frequencies. Given this more complete load inventory, we estimated that to reach a 40% reduction in the Detroit River TP load to Lake Erie, accounting for the missed load, point and non-point sources other than that coming from Lake Huron and the atmosphere would have to be reduced by at least 50%. We also discuss the implications of discontinuous monitoring efforts.  相似文献   

8.
The Soil and Water Assessment Tool (SWAT), a physically-based watershed-scale model, holds promise as a means to predict tributary sediment and nutrient loads to the Laurentian Great Lakes. In the present study, model performance is compared across six watersheds draining into Lake Erie to determine the applicability of SWAT to watersheds of differing characteristics. After initial model parameterization, the Huron, Raisin, Maumee, Sandusky, Cuyahoga, and Grand SWAT models were calibrated (1998-2001) and confirmed, or validated (2002-2005), individually for stream water discharge, sediment loads, and nutrient loads (total P, soluble reactive P, total N, and nitrate) based on available datasets. SWAT effectively predicted hydrology and sediments across a range of watershed characteristics. SWAT estimation of nutrient loads was weaker although still satisfactory at least two-thirds of the time across all nutrient parameters and watersheds. SWAT model performance was most satisfactory in agricultural and forested watersheds, and was less so in urbanized settings. Model performance was influenced by the availability of observational data with high sampling frequency and long duration for calibration and confirmation evaluation. In some instances, it appeared that parameter adjustments that improved calibration of hydrology negatively affected subsequent sediment and nutrient calibration, suggesting trade-offs in calibrating for hydrologic vs. water quality model performance. Despite these considerations, SWAT accurately predicted average stream discharge, sediment loads, and nutrient loads for the Raisin, Maumee, Sandusky, and Grand watersheds such that future use of these SWAT models for various scenario testing is reasonable and warranted.  相似文献   

9.
Suspended sediments collected from five tributaries to the lower Great Lakes were chemically analyzed for several forms of phosphorus and bioassayed under aerobic conditions to measure the release of algal-available phosphorus. The bioassay data for all samples, interpreted through a first-order model of available phosphorus release, showed an average of 21.8 percent of the total paniculate phosphorus ultimately was available to Selenastrum capricornutum, and available phosphorus was released at an average rate of 0.154 day?1. Amounts of available phosphorus varied considerably between tributaries with the Ohio tributaries (Maumee, Sandusky, and Cuyahoga Rivers) showing generally greater amounts than those in New York (Cattaraugus and Genesee Rivers). Non-apatite fractions of inorganic phosphorus (base-, and reductant-extractable) correlated well with levels of available phosphorus in the suspended sediment samples; however, the first-order release coefficients showed little dependency on the paniculate phosphorus characteristics. The results indicate that prediction of phosphorus dynamics in the lower Great Lakes may be made with greater accuracy than current models allow by considering available phosphorus to be released from an ultimately-available fraction of the total paniculate phosphorus during residence in the water column.  相似文献   

10.
Urgent action is needed to prevent the successful establishment of four invasive fish species, collectively known as Asian carps, within the Great Lakes basin. Preliminary assessments of spawning potential of Great Lakes tributaries are needed to effectively allocate resources to early-detection programs and more detailed hydrodynamic modelling. Previous preliminary assessments determining the Asian carp spawning potential of tributaries potentially masked temporal variations in stream temperature and velocity. A preliminary assessment was developed that incorporates both the spawning biology of Asian carps and the hydrodynamics of tributaries, based on data at a higher temporal resolution than used previously, to determine the spawning potential of a tributary. The assessment was conducted on eight Lake Ontario tributaries, based on in-situ temperature and velocity data from 2009 to 2014. Two tributaries were found to be suitable using mean data across the assessed time frame; however, inter-annual suitability varied greatly and six tributaries were found to be suitable in at least one of six years over the study period. The assessment highlights previously unexplored inter-annual variation in suitability and provides a method using existing data to identify suitable tributaries for more detailed analyses involving hydrodynamic modelling. This approach can be used as a heuristic first step to inform management actions, such as early-detection and rapid-response programs, to prevent Asian carp spawning in the Canadian Great Lakes basin.  相似文献   

11.
The round goby (Neogobius melanostomus) is increasingly being reported in tributaries of the Laurentian Great Lakes where these fish have been shown to adversely impact native stream biota. Determining the characteristics and distribution of invaded streams are the first steps toward effective round goby management. We sampled 30 tributaries in the Great Lakes basin and characterized each in terms of nine physical reach-scale attributes. Round goby were detected in 14 streams where abundances ranged from 4% to 53% of the fish sampled in each stream. Round goby was the single most abundant fish species sampled, constituting 14% of all fish encountered across all sites, and 30% of individuals in round goby-present sites. Round goby-present sites were larger, had lower channel slopes, less large wood, and less canopy cover than round goby-absent sites, suggesting that these attributes may promote round goby establishment. Mottled sculpin, cyprinids, brook stickleback, white sucker and rainbow trout were associated with goby absence while centrarchids, percids, yellow bullhead, and mud minnow were associated round goby presence. Collectively these results demonstrate that round goby are widespread in eastern Michigan tributaries to the Great Lakes, present in streams with a range of physical habitat characteristics, and that round goby presence is associated with certain fish species.  相似文献   

12.
Over the last century geological studies of the ancestral Great Lakes have confirmed that the large surface load of the Laurentide ice sheet deformed the region causing tilting of ancient lake shorelines. Models of this glacial isostatic adjustment mechanism have promoted understanding of this process but have only included ice sheet loads as the source of earth deformation in the region. We describe a method, utilizing a model of glacial isostatic adjustment combined with GIS, that recreates the paleohydrology of the Great Lakes. Predictions include the extent of late glacial, postglacial, and Holocene lakes and their associated outlets and bathymetries. This predicted history of the Great Lakes is similar to that obtained from a century of detailed field studies but our method uses only the present digital elevation model, a prescribed ice sheet chronology, and an assumed earth viscoelastic rheology. Ancient lake bathymetry predictions provide an estimate of water loads associated with each lake. The effect of these lake loads upon vertical deformation of the Great Lakes region is shown to be small, less than 15 m, but not insignificant when compared to approximately 150 m of deformation forced by ice and ocean loads. Maximum lake-induced deformation is centered upon Lake Superior where water depths were greatest. Where topography is low relief, prediction of shoreline locations should include the lake loading effect as well as the ice and ocean loads.  相似文献   

13.
The Laurentian Great Lakes of North America have been a focus of environmental and ecosystem research since the Great Lakes Water Quality Agreement in 1972. This study provides a review of scientific literature directed at the assessment of Laurentian Great Lakes coastal ecosystems. Our aim was to understand the methods employed to quantify disturbance and ecosystem quality within Laurentian Great Lakes coastal ecosystems within the last 20 years. We focused specifically on evidence of multidisciplinary articles, in authorship or types of assessment parameters used. We sought to uncover: 1) where Laurentian Great Lakes coastal ecosystems are investigated, 2) how patterns in the disciplines of researchers have shifted over time, 3) how measured parameters differed among disciplines, and 4) which parameters were used most often. Results indicate research was conducted almost evenly across the five Laurentian Great Lakes and that publication of coastal ecosystems studies increased dramatically ten years after the first State of the Great Lakes Ecosystem Conference in 1994. Research authored by environmental scientists and by multiple disciplines (multidisciplinary) have become more prevalent since 2003. This study supports the likelihood that communication and knowledge-sharing is happening between disciplines on some level. Multidisciplinary or environmental science articles were the most inclusive of parameters from different disciplines, but every discipline seemed to include chemical parameters less often than biota, physical, and spatial parameters. There is a need for an increased understanding of minor nutrient, toxin, and heavy metal impacts and use of spatial metrics in Laurentian Great Lakes coastal ecosystems.  相似文献   

14.
An aggregated view of total phosphorus and chlorophyll a in Saginaw Bay indicates that concentrations of both constituents declined approximately in concert with declining total phosphorus (P) loads stabilizing by the late 1980s. A more spatially focused view reveals that total phosphorus declines outside of the Saginaw River plume, accompanied by more subtle chlorophyll a decreases. In contrast, soluble reactive phosphorus and ammonia have recently declined throughout the bay, while nitrate has remained relatively stable. Concentration data from nearshore transects do not exhibit large differences from open-water sample sites. The 440 tonne P/year target phosphorus load established in the 1978 amendments to the Great Lakes Water Quality Agreement has almost never been met, and total phosphorus concentrations regularly exceed the 15 μg/L concentration objective proposed in documentation supporting the 1978 amendments. Seasonal patterns in both total phosphorus and chlorophyll a are more pronounced in the most recent data, with peaks occurring in September–October. This apparently evolving seasonal pattern may result from seasonal changes in Saginaw River flow inputs, or seasonal variation in dreissenid mussel feeding and filtration rates. The adaptive management framework stipulated in the 2012 Great Lakes Water Quality Protocol should promote better monitoring of Saginaw Bay water quality into the future, with enhanced opportunities to better understand the factors that have maintained ongoing eutrophication symptoms.  相似文献   

15.
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets.  相似文献   

16.
An algorithm that utilizes individual lake hydro-optical (HO) models has been developed for the Great Lakes that uses SeaWiFS, MODIS, or MERIS satellite data to estimate concentrations of chlorophyll, dissolved organic carbon, and suspended minerals. The Color Producing Agent Algorithm (CPA-A) uses a specific HO model for each lake. The HO models provide absorption functions for the Color Producing Agents (CPAs) (chlorophyll (chl), colored dissolved organic matter (as dissolved organic carbon, doc), and suspended minerals (sm)) as well as backscatter for the chlorophyll, and suspended mineral parameters. These models were generated using simultaneous optical data collected with in situ measurements of CPAs collected during research cruises in the Great Lakes using regression analysis as well as using specific absorption and backscatter coefficients at specific chl, doc, and sm concentrations. A single average HO model for the Great Lakes was found to generate insufficiently accurate concentrations for Lakes Michigan, Erie, Superior and Huron. These new individual lake retrievals were evaluated with respect to EPA in situ field observations, as well as compared to the widely used OC3 MODIS retrieval. The new algorithm retrievals provided slightly more accurate chl values for Lakes Michigan, Superior, Huron, and Ontario than those obtained using the OC3 approach as well as providing additional concentration information on doc and sm. The CPA-A chl retrieval for Lake Erie is quite robust, producing reliable chl values in the reported EPA concentration ranges. Atmospheric correction approaches were also evaluated in this study.  相似文献   

17.
The Great Lakes contain most of the United States’ surface freshwater and provide deep personal and economic connections for the residents of the region. These connections create an opportunity for bipartisanship in environmental policies with the potential to permeate energy policies. To explore that possibility, this paper examines how party affiliation affects support for water policy and energy policy in the Great Lakes region of the United States. Data from the Great Lakes Region Public Opinion Survey asked 696 Republicans, Independents, and Democrats from the Great Lakes region to respond to a range of environmental policy prompts. Responses to the policy prompts are grouped into four components: Water Quality, Water Diversions, Traditional Fuels, and Renewables. The results find that there is bipartisan support for the Water Quality and Water Diversions components. Energy policies do not receive the same bipartisan support, with Democrats and Independents having more support for the Renewables component while Republicans have more support for the Traditional Fuels component. However, when the fuel source is tied to its pollutants of the Great Lakes, then reactions to that fuel source receive a bipartisan response. The results of this research suggest that embedding water policy in energy policy may allow those policies to receive more bipartisan support. Combining water policy and energy policy can depolarize some of the politics surrounding environmental policy broadly.  相似文献   

18.
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

19.
Atrazine is an herbicide used extensively throughout the Midwest corn belt, including the agricultural regions within the Great Lakes basin watershed. Measurements of atrazine concentrations in the Great Lakes are few, however, so knowledge of its current concentrations, persistence, and trends in this ecosystem is limited. A dynamic annual time step model was used to predict atrazine concentrations over time in the Great Lakes based on varied atrazine loading rates to the lakes (“most-likely” and “high” loading conditions). Four degradation scenarios were evaluated: no degradation, and atrazine degradation with half-lives of 2 years, 5 years, and 10 years. Predicted steady-state concentrations for all of the scenarios and all the Great Lakes ranged from 0.0024 to 0.88 μg/L. The number of years until steady-state conditions were achieved ranged from 4 to over 400 years. The most-likely loading rate and two-year half-life scenario had the lowest concentrations (0.0024 to 0.13 μg/L) and the fewest years (4 to 13 years) to achieve steady-state conditions. Available monitored atrazine concentrations in the Great Lakes are very similar to the most-likely loading rate and 2-year half-life scenario predicted values. Monitored and predicted concentrations in the Great Lakes indicate atrazine does not currently pose a toxicological risk to humans or aquatic organisms, and under current and expected lower loading rates should remain well below criteria values.  相似文献   

20.
Inorganic carbon (IC), total organic carbon (OC), and black carbon (BC) were analyzed in eight sediment cores obtained from deep water (>30 m) sediments in the Chippewa and south Chippewa basins, as well as Green Bay in Lake Michigan. These cores were segmented at high resolution and radio-dated to reconstruct a detailed history of deposition to the lake both spatially and temporally since ca. 1850 CE. To help interpret the depositional record, cores were also characterized for stable isotopes (13C and 15N), as well as particle size distribution, density, organic matter (OM), and other parameters. Fine (silt and clay) sediment particles contained OM of primarily lacustrine algal biomass origin. Sedimentation fluxes showed large increases in OM and OC fluxes through much of the lake during the onset of industrialization and the period of rapid industrialization to onset of Great Lakes environmental legislation. In contrast, fluxes and loading of BC increased dramatically in the southern basin until the 1930's, then decreased substantially after the 1940's. This observation was due largely to results from site M009 nearest the steel mills and industrial zones of Chicago and northern Indiana. Together, whole lake loadings of OM and BC provide evidence that changing industrial activity and legislation intended to curb air pollution in the Great Lakes region have had a fairly rapid and dramatic impact. In contrast, legislation intended to decrease eutrophication through reductions in nutrient loading to the lake have not had a similar impact on sedimentation of OM in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号