首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Sea lamprey (Petromyzon marinus) are a nuisance aquatic species in the Great Lakes and Lake Champlain that have devastated native fish populations and hampered the restoration of sport fisheries. This study examined inter-basin movement of sea lamprey in Lake Champlain to identify tributaries that contribute parasitic-phase sea lamprey and provide information for prioritizing those tributaries for sea lamprey control. A total of 4,125 recently metamorphosed sea lamprey was captured in tributaries to Lake Champlain and marked using coded wire tags between the fall of 2001 and winter 2003. These sea lamprey migrated to the lake to prey on salmonids and other fishes and returned to tributaries to spawn about 12–18 months after migration. We recaptured 6 tagged sea lamprey from the lake from spring 2002 through winter 2004, and 35 from tributaries in spring 2003 and 2004. We noted no apparent trends in movement among basins. Sea lamprey were collected at distances up to 64 km from their natal tributaries. Tributary contributions of parasites were significantly different from expectations in the 2002 parasitic-phase cohort (χ2 = 9.668, p < 0.011, 3 df), suggesting differential survival rates among out-migrating transformers from different tributaries. Estimates of the lake-wide out-migrating transformer population for the 2002 and 2003 parasitic-phase cohorts were 269,139 ± 55,610 (SD) and 111,807 ± 23,511 (SD). Results from this study suggest that sea lamprey movement is not inhibited by causeways dividing sub-basins, but movement among sub-basins is somewhat constrained. This indicates that management efforts to control sea lamprey should continue to treat the lake as a single system.  相似文献   

2.
Sea lamprey (Petromyzon marinus) is a nuisance species in the Laurentian Great Lakes and Lake Champlain that has devastated native fish populations and hampered sport fisheries development. We developed a modified stage-based life history matrix for sea lamprey to analyze the effects of various management efforts to suppress sea lamprey population growth in Lake Champlain. These efforts targeted different life stages of the sea lamprey life cycle. A beta distribution was used to distribute stochastic larval populations among twenty sea lamprey-bearing tributaries and five deltas to Lake Champlain, from which sea lamprey that survive through larval metamorphosis were then pooled into a lake-wide parasitic-phase population. Parasitic-phase survival to the spawning stage was evaluated based on proximity to the natal tributary and on the size of the resident larval population in each tributary. Potential control strategies were modeled at egg to emergence, larval, and spawning stages to reduce vital rates at each stage, with the goal of suppressing parasitic-phase production. Simulations indicate that control of the larval stage was essential to achieving this goal, and with supplemental effort to reduce the vital rates at early life stages and at the spawning stage, the parasitic-phase population can be further suppressed. Sensitivity simulations indicate that the life history model was sensitive to egg deposition rate, abundance of parasitic-phase sea lamprey from unknown, uncontrolled sources, and the method in which parasitic-phase sea lamprey select tributaries for spawning. Results from this model can guide management agencies to optimize future management programs.  相似文献   

3.
Identifying the stream of origin of spawning-phase sea lamprey (Petromyzon marinus) is crucial to improve the control of this nuisance species in the Laurentian Great Lakes and Lake Champlain. Recently, Howe et al. (2013) found a poor accuracy in the natal origin assignment of 33 spawning adults of known-origin from the Lake Champlain watershed using the statoliths from larvae captured in their natal streams to develop discriminant functions. Herein, we revisited the natal origin assignment of the same sample of adults, this time using the statoliths from newly-metamorphosed sea lampreys (transformers) captured in their natal stream. Using laser-ablation inductively coupled plasma-mass spectrometry, 216 transformers originating from 11 Lake Champlain tributaries were successfully discriminated with a classification accuracy of 78% (range: 40-100%), with rubidium (Rb) and strontium (Sr) as the most discriminating elements. However, the assignment to the correct (known) natal origin for adults was poor. While the majority of adults were known to originate from Lewis and Malletts creeks, our maximum likelihood procedure did not assign any adults to these streams. Such result might be explained by temporal and analytical variability of elemental signatures and by a mismatch in Rb concentrations between transformers and adults probably due to physiological effects. We do not recommend the use of statolith microchemistry to classify adults to a natal tributary when Rb is considered as a discriminating element until we can understand and predict the shift in Rb between metamorphosis and the spawning adult life stage.  相似文献   

4.
Sea lamprey (Petromyzon marinus) is a nuisance species in the Great Lakes and Lake Champlain. Information about tributary contributions to the spawning adult phase is critical for appropriate allocation of efforts to control this species. We examined the accuracy of statolith elemental composition to identify the natal origin (i.e., individual rivers or clusters of rivers) of 33 known-origin adults from the Lake Champlain basin. To do so, we first established natal origin chemical signatures using the statoliths of 238 larvae from the same basin. Using laser-ablation inductively coupled plasma mass spectrometry, the 238 larvae originating from 12 streams and one delta were discriminated with a classification accuracy of 57% (range: 25–80%) and 70% (range: 29–80%) when individual streams and groups of streams were considered respectively, highlighting the potential of statolith microchemistry to identify natal origins. However, the assignment of natal origin for adults was overwhelmingly incorrect. Using a maximum likelihood procedure, 88% of the adults were assigned to a cluster of three streams and one delta, while only 3% of these individuals were known to originate from this particular cluster. More research is required to understand the low classification accuracy of sea lamprey adults and validate the use of statolith microchemistry to identify sea lamprey natal origin.  相似文献   

5.
Understanding variation in fish populations is valuable from both a management and an ecological perspective. Great Lakes sea lampreys are controlled primarily by treating tributaries with lampricides that target the larval stage. Great Lakes streams were divided into four categories based on their regularity of parasitic lamprey production inferred from the historic regularity of chemical treatments. This categorization was intended to direct future assessment efforts, but may also reflect differences in early demographics. We analyzed assessment data collected from 1959 to 2005 using mixed-effects models and variance components analyses to test for differences in recruitment and growth to age 1 among stream categories. Recruitment was twice as large in regularly treated streams as in irregularly treated streams, indicating that age-1 year-class strength is correlated with consistent chemical treatments. We found no differences in length at age 1 among stream categories; however, Lake Superior streams with irregular treatment histories exhibit more variation in length at age 1 than streams that are treated regularly. The majority of variation in length at age 1 was due to within-year variation, which was fairly consistent across stream types within each lake. Our results indicate that early life history differs among subsets of the Great Lakes sea lamprey population, and management practices should be modified to account for these differences. Mixed-effects models and variance components analyses are useful tools for analyzing large historical datasets for patterns of demographic variation within and among populations, whether the ultimate goal is pest control, harvesting, or conservation.  相似文献   

6.
The sea lamprey (Petromyzon marinus) is an invasive, parasitic species with a long history of decimating fisheries in the Laurentian Great Lakes. The sea lamprey life cycle consists of stream larval ammocoete, open water parasitic, and adult spawning phases. Population control of sea lamprey is achieved mainly through the application of chemical lampricides that target the sedentary larval stage. The physical characteristics of preferred ammocoete habitat are well defined at the sub-reach scale (< 50 m). We tested whether the spatial distribution of beds of preferred ammocoete habitat depends upon a specific set of geomorphic variables (field-measured slope, and geographic information system (GIS)- derived curvature, radius of curvature, presence of a confluence, and valley wall type). We tested for this relationship at several spatial scales of stream length ranging from 50 m to 300 m, on the East Branch of the Chagrin River, Ohio, USA, a tributary stream to Lake Erie. Of the five geomorphic variables tested, field-measured slope and radius of curvature influence the probability of a stream segment containing preferred habitat at a stream segment length of 50 m. We found no relationships at longer stream segment lengths. GIS-estimated slopes were not sufficiently accurate at such short segment lengths, so the final model included radius of curvature only. These results are applicable to the Empiric Stream Treatment Ranking (ESTR) system, which ranks tributaries for treatment with lampricide based partially on the total amount of preferred ammocoete habitat. GIS-based estimates of the total amount of preferred ammocoete habitat may complement current field-based estimates, or provide a basis for nested sampling designs.  相似文献   

7.
The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in liquid form to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries since the late 1950s. In the 1980s a dissolvable TFM bar was developed as a supplemental tool for application to small tributaries as a deterrent to larvae seeking water not activated with TFM. The size, mass, and number of bars needed in some streams, as well as the location of the streams, limit the utility of a TFM bar. The development and use of an alternative niclosamide bar has the potential to use fewer bars to achieve similar results. However, the use of a niclosamide bar is dependent upon its larval deterrent capability compared to the TFM bar. In this study, we developed a laboratory-scale, simulated stream fluvarium with several avoidance areas including two side channels and a seep. The objective was to evaluate the deterrent capabilities of TFM and niclosamide. We found similar behavioral responses, with TFM and niclosamide having similar capabilities to prevent sea lamprey from seeking refuge in side channels and seep avoidance areas. TFM-treated side channels and seep increased sea lamprey occupancy in the main channel 2.56 times more than the untreated-controls (95% CI 1.63–4.14) whereas niclosamide-treated side channels and seep increased sea lamprey occupancy of the main channel 2.68 times more than the untreated-controls (95% CI 1.72–4.32). These responses indicate a niclosamide bar would effectively prevent sea lamprey escapement into freshwater during a lampricide treatment at concentrations unlikely to harm aquatic organisms.  相似文献   

8.
Knowledge of stock–recruitment dynamics is as important for control of pest species such as the sea lamprey (Petromyzon marinus) as it is for sustainable harvest management of exploited fish species. A better understanding of spatial and temporal variation in recruitment of pest populations may inform managers on where and when to effectively apply different control methods. Sea lamprey stock–recruitment data combined from streams across the Great Lakes basin into a Ricker stock–recruitment model indicated both compensation (density-dependent survival) and a large amount of density-independent recruitment variation. We evaluated the use of a mixed-effects model to look at common year effects and stream-level variables that could affect productivity and growing season length, with the objective of identifying factors that may explain this density-independent variation in recruitment. After selecting the “best model”, we tested factors that might affect recruitment variation, using a Great Lakes dataset comprising 97 stream–years. Lake Superior tributaries, streams with larger numbers of lamprey competitors, and streams regularly requiring lampricide treatment showed significantly higher recruitment. Alkalinity and thermal regulation did not affect the observed recruitment pattern among streams. In four long-term study streams we observed significant variation among streams, tested as a fixed effect, but no evidence suggested a common pattern of variation among years. Differences in recruitment among streams were consistent with evidence of quality of spawning and larval habitat among streams. Our findings suggest that management models should account for differences in recruitment dynamics among sea lamprey-producing streams, but not common year effects.  相似文献   

9.
Sea lampreys (Petromyzon marinus), first reported in Lake Erie in 1921, emigrated from Lake Ontario via the Welland Canal. It was not until the advent of pollution abatement, stream rehabilitation, and salmonid enhancement programs that sea lampreys proliferated. The Great Lakes Fishery Commission (GLFC), in co-operation with state, provincial, and federal fisheries agencies, implemented an integrated sea lamprey management (IMSL) plan for Lake Erie in 1986. Suppression of sea lampreys was nearly immediate, as indicated by declining larval-, parasitic-, and spawning-phase abundance, while survival of lake trout (Salvelinus namaycush) was markedly improved. Consistent with their vision statement, the GLFC began reducing lampricide use by the mid-1990s, while increasing reliance on alternative control methodologies. Reduction of treatment effort coincided with the development of new lampricide application techniques and treatment selection criteria, in addition to heightened regional concern for the impact of lampricide on non-target species. Subsequently, Lake Erie's sea lamprey numbers have rebounded, and marking rates on lake trout have approached pre-control levels. It is hypothesized that Lake Erie's rising abundance is primarily fuelled by untreated and residual larval populations, although some migration of parasitic-phase sea lampreys from Lake Huron is suspected. Model simulations infer that treatment effort on Lake Erie was sub-optimal from 1995 to 1998. Beginning in 1999, the GLFC enhanced measures to identify and control sources of sea lampreys. Based on historical abundance patterns and model results, it is anticipated that intensified management in Lake Erie will reduce sea lamprey numbers and provide an opportunity for lake trout restoration.  相似文献   

10.
Use of the selective lampricide 3-trifluoromethyl-4-nitrophenol (TFM) and other alternative control methods (such as barriers which prevent sea lampreys, Petromyzon marinus, from reaching their spawning grounds) have succeeded in reducing sea lamprey abundance in the Great Lakes to a level that permits the survival of economically-valuable fish species. The New Science and Control workgroup at the second Sea Lamprey International Symposium (SLIS II) addressed how new knowledge of lamprey biology might contribute to additional alternatives to the use of lampricides, and where future research efforts should be directed. This paper focuses on the discussions of one of three subgroups of the New Science and Control workgroup into two aspects of the sea lamprey life cycle (metamorphosis and reproduction) that might be targets of future control methods. Methods were suggested that might disrupt the pre-metamorphic accumulation of lipid reserves or the successful commencement of feeding, and areas identified that might improve regulation of lamprey reproduction. Although all aspects of the reproductive endocrinology of lampreys should be studied, there should be particular focus on those factors that determine the sex ratio, mating systems, and reproductive success of sea lampreys and those that trigger the onset of sexual maturation.  相似文献   

11.
We evaluated statistical methods for estimating abundances of adult sea lamprey (Petromyzon marinus) migrating in Great Lakes tributaries. The sea lamprey is the target of a basin-wide, bi-national control program. Abundance estimates from mark-recapture data are used to evaluate program success and the efficiency of sea lamprey trapping. Recent tracking studies suggested the mark-recapture estimates of abundance could be biased. We compared four estimators of abundance using stratified (weekly) mark-recapture data for 19?years of trapping in the St. Marys River. Abundances from the pooled Petersen estimator were similar to abundances from the stratified Schaefer and stratified Petersen estimators, but substantially lower than abundances from a stratified Bayesian P-spline estimator. In simulations of virtual populations, pooled Petersen and Bayesian P-spline estimates were similar across a range of conditions where catchability differed between marked and unmarked lamprey and changed over the trapping season, with one exception. Abundances from the Bayesian P-spline estimator were strongly positively biased when catchability of marked lamprey increased over the season, while catchability of unmarked lamprey did not. Estimates from both estimators were negatively biased when lamprey displayed consistent individual differences in catchability and positively biased when a proportion of marked lamprey fell back. Discrepancies between mark-recapture and tracking studies cannot be reconciled by the choice of abundance estimator, but could be an outcome of bias due to individual differences in catchability. Sea lamprey managers could also switch from the stratified Schaefer to the pooled Petersen estimator to simplify field operations without losing accuracy and precision.  相似文献   

12.
The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2′, 5-dichloro-4′-nitrosalicylanilide (niclosamide) are used to control sea lamprey (Petromyzon marinus), an invasive species in the Great Lakes. Age-0 lake sturgeon (Acipenser fulvescens), a species of conservation concern, share similar stream habitats with larval sea lampreys and these streams can be targeted for lampricide applications on a 3- to 5-year cycle. Previous laboratory research found that lake sturgeon smaller than 100 mm could be susceptible to lampricide treatments. We conducted stream-side toxicity (bioassay) and in situ studies in conjunction with 10 lampricide applications in nine Great Lakes tributaries to determine whether sea lamprey treatments could result in in situ age-0 lake sturgeon mortality, and developed a logistic model to help predict lake sturgeon survival during future treatments. In the bioassays the observed concentrations where no lake sturgeon mortality occurred (no observable effect concentration, NOEC) were at or greater than the observed sea lamprey minimum lethal concentration (MLC or LC99) in 7 of 10 tests. We found that the mean in situ survival of age-0 lake sturgeon during 10 lampricide applications was 80%, with a range of 45–100% survival within streams. Modeling indicated that in age-0 lake sturgeon survival was negatively correlated with absolute TFM concentration and stream alkalinity, and positively correlated with stream pH and temperature. Overall survival was higher than expected based on previous research, and we expect that these data will help managers with decisions on the trade-offs between sea lamprey control and the effect on stream-specific populations of age-0 lake sturgeon.  相似文献   

13.
Sea lamprey Petromyzon marinus control in the Great Lakes primarily involves application of lampricides to streams where larval production occurs to kill larvae prior to their metamorphosing and entering the lakes as parasites (juveniles). Because lampricides are not 100% effective, larvae that survive treatment may metamorphose before streams are again treated. Larvae that survive treatment have not been widely studied, so their dynamics are not well understood. We tagged and released larvae in six Great Lake tributaries following lampricide treatment and estimated vital demographic rates using multistate tag-recovery models. Model-averaged larval survivals ranged from 56.8 to 57.6%. Model-averaged adult recovery rates, which were the product of juvenile survivals and adult capture probabilities, ranged from 6.8 to 9.3%. Using stochastic simulations, we estimated production of juvenile sea lampreys from a hypothetical population of treatment survivors under different growth conditions based on parameter estimates from this research. For fast-growing populations, juvenile production peaked 2 years after treatment. For slow-growing populations, juvenile production was approximately one-third that of fast-growing populations, with production not peaking until 4 years after treatment. Our results suggest that dynamics (i.e., survival, metamorphosis) of residual larval populations are very similar to those of untreated larval populations. Consequently, residual populations do not necessarily warrant special consideration for the purpose of sea lamprey control and can be ranked for treatment along with other populations. Consecutive lampricide treatments, which are under evaluation by the sea lamprey control program, would be most effective for reducing juvenile production in large, fast-growing populations.  相似文献   

14.
The rehabilitation of extirpated lake trout (Salvelinus namaycush) in the Great Lakes and Lake Champlain has been hindered by various biological and physiological impediments. Efforts to restore a lake trout fishery to Lake Champlain include hatchery stocking and sea lamprey control. Despite these management actions, there is little evidence of recruitment of naturally-produced fish in annual fall assessments. Spawning occurs at multiple sites lake-wide in Lake Champlain, with extremely high egg and fry densities, yet sampling for juvenile lake trout has only yielded fin-clipped fish. To investigate this recruitment bottleneck, we assessed predation pressure by epi-benthic fish on emergent fry on two spawning reefs and the subsequent survival and dispersal of fry in potential nursery areas. Epi-benthic predators were sampled with 2-h gillnet sets at two small, shallow sites in Lake Champlain throughout the 24-h cycle, with an emphasis on dusk and dawn hours. In total, we documented seven different species that had consumed fry, with consumption rates from 1 to 17 fry per stomach. Rock bass and yellow perch dominated the near-shore fish community and were the most common fry predators. Predator presence and consumption of fry was highest between 19:00 and 07:00. Predators only consumed fry when fry relative abundance was above a threshold of 1 fry trap− 1 day− 1. We used an otter trawl to sample for post-emergent fry adjacent to the reef, but did not capture any age-0 lake trout. Due to the observed predation pressure by multiple littoral, species on shallow spawning reefs, lake trout restoration may be more successful at deep, offshore sites.  相似文献   

15.
Lake Champlain shares a geological history with the Great Lakes and, as part of the St. Lawrence drainage, also shares biological and ecological similarities. The complex bathymetry and extensive shoreline provide a variety of lacustrine habitats, from deep oligotrophic areas to shallow bays that are highly eutrophic. The large basin:lake ratio (19:1) makes Lake Champlain vulnerable to impacts associated with land use, and in some parts of the lake these impacts are further exacerbated by limited water exchange among lake segments due to both natural and anthropogenic barriers. Research in Lake Champlain and the surrounding basin has expanded considerably since the 1970s, with a particularly dramatic increase since the early 1990s. This special issue of the Journal of Great Lakes Research brings together 16 reports from recent research and monitoring efforts in Lake Champlain. The papers cover a variety of topics but primarily focus on lake hydrodynamics; historical and recent chemical changes in the lake; phosphorus loading; recent changes in populations of phytoplankton, zooplankton, and fishes; impacts of invasive species; recreational use; and the challenges of management decision-making in a lake that falls within the legal jurisdictions of two U.S. states, one Canadian province, two national governments, and the International Joint Commission. The papers provide not only evaluations of progress on some critical management issues but also valuable reference points for future research.  相似文献   

16.
Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4-6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth.  相似文献   

17.
Understanding the hydrodynamics of Lake Champlain is a basic requirement for developing forecasting tools to address the lake‘s environmental issues. In 2003 through 2005, surface drifting buoys were used to help characterize the circulation of the main body and northeast region (Inland Sea) of the lake. Progressive vector diagrams of over-lake winds when compared to drifter trajectories suggest the presence of gyre-like circulation patterns. Drifter statistics suggest average current speeds of 10 cm s−1 and were predominantly northward (+ V) due to northerly-directed winds and lake geometry. Singleparticle eddy diffusivities on the order of 106 cm2 s−1 were calculated which is consistent with results from the Great Lakes and in some oceanic regions. However, the Lagrangian length and time scales, a measure of flow decorrelation scales, were in general smaller than seen in the Great Lakes, which is a natural consequence of the smaller basin size of Lake Champlain relative to the Great Lakes.  相似文献   

18.
In 1997 the Great Lakes Fishery Commission approved a 5-year (1998 to 2002) control strategy to reduce sea lamprey (Petromyzon marinus) production in the St. Marys River, the primary source of parasitic sea lampreys in northern Lake Huron. An assessment plan was developed to measure the success of the control strategy and decide on subsequent control efforts. The expected effects of the St. Marys River control strategy are described, the assessments in place to measure these effects are outlined, and the ability of these assessments to detect the expected effects are quantified. Several expected changes were predicted to be detectable: abundance of parasitic-phase sea lampreys and annual mortality of lake trout (Salvelinus namaycush) by 2001, abundance of spawning-phase sea lampreys by 2002, and relative return rates of lake trout and sea lamprey wounding rates on lake trout by 2005. Designing an effective assessment program to quantify the consequences of fishery management actions is a critical, but often overlooked ingredient of sound fisheries management.  相似文献   

19.
In the one hundred years since sea lampreys (Petromyzon marinus) were discovered in Lake Erie, the species completed its invasion throughout the Great Lakes basin, contributed to the downfall of the commercial fishing industry, and served as a catalyst for the development of the collaborative fishery management regime that exists today. The sea lamprey invasion simultaneously caused wide-spread devastation while giving rise to a collective realization that the health of the Great Lakes would require ongoing cooperation among governments, scientists, and users of the resource. Since its inception, the effort to control sea lampreys in the Great Lakes has been defined by a “shoot for the moon” mentality. The desperation of communities directly harmed by the sea lamprey invasion, coupled with the determination and unyielding commitment to science by those tasked with addressing the problem, led to the formation of the only reported successful aquatic vertebrate invasive species control program at an ecosystem scale.  相似文献   

20.
The lampricides TFM (3-trifluoromethyl-4′-nitrophenol) and Niclosamide (NIC, 2′, 5-dichloro-4′-nitrosalicylanilide) are used to control sea lamprey populations in the Great Lakes and associated tributaries. Niclosamide is often used as an additive to TFM to reduce the amount of TFM required to control sea lamprey. Concern is growing over the risk that lampricide treatments pose to native freshwater mussels residing in streams. Our objectives were to determine the acute toxicity of TFM and TFM:NIC to free glochidia (removed from the marsupial gills), compare the relative toxicity of TFM and TFM:NIC between free glochidia and brooded glochidia (within the marsupial gills), determine if glochidia age influences toxicity, and assess if exposure of gravid mussels to TFM and TFM:NIC alters behavior and reproduction. Three acute toxicity tests (2:TFM, 1:TFM : NIC) were conducted with glochidia and adults of the plain pocketbook mussel (Lampsilis cardium). In tests with glochidia, viability did not differ across TFM and TFM : NIC concentrations that encompassed typical stream treatments. Glochidia age influenced toxicity as glochidia obtained later in the brooding season were less viable than glochidia obtained earlier in the brooding season. Exposure of adults to elevated concentrations of lampricides often resulted in behavioral effects, but rarely affected reproductive endpoints. Because mussels are long-lived (30 to 100 y), even intermittent and short duration exposures may cumulatively affect mussels over their lifetime. The risks posed by lampricide treatments in the Great Lakes would be further informed by research on the sublethal effects of lampricides, particularly effects on non-target organisms such as mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号