首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a CLHS(Capacitor Less Half Sustain) driving method that is applied to a long gap panel to reduce the power consumption. In order to reduce the power consumption in moving images, the luminous efficiency should be improved at the low discharge load(25%). The weight of reactive power consumption tends to increase as the low discharge load decreases. Thus, it is very important to improve the luminous efficiency at low discharge load. It is well known that a long gap panel improves the luminance and the luminous efficiency but it is very difficult to drive the panel due to high driving voltage. It is confirmed that the main factors which cause a long gap panel to increase the minimum driving voltages are not only a long discharge gap but also self-erasing discharge. Self-erasing discharge is generated between the address and sustain electrodes in a sustain period. The CLHS driving method can reduce the reactive power consumption in a sustain period because energy recovery capacitors were removed in the sustain circuit. The CLHS driving method can reduce the minimum driving voltage of the long gap panel because the self-erasing discharge was prevented. When the CLHS driving method was applied to the panel with an ITO gap of 100 μm, VSand VAminimum voltages are reduced by about 9 V and 12 V compared with those of the normal driving method. The luminance and the luminous efficiency also increased by about 24.3% and 33.3% at the discharge load of 4% compared with those at the normal condition.  相似文献   

2.
Numerical Simulation of the Discharge Efficiency in Five-electrode AC PDP   总被引:1,自引:0,他引:1  
A new type of AC PDP (alternating current plasma display panel) cell with a fiveelectrode structure is developed to improve the luminous efficiency of AC PDP, The discharge efficiency of this new cell structure is investigated by a 2D fluid simulation. Continuity equations and flux density equations for charged particles and excited atoms, energy balance equation for electrons are included in the model. The discharge gas is He 5%Xe. The reactions of ionization, excitation, recombination, and radiation are taken into account. The vacuum ultraviolet radiation efficiency of the five-electrode cell structure is about 20% higher than that of a conventional three-electrode cell structure.  相似文献   

3.
The fluid models of gas discharge in alternating current plasma display panel (AC PDP) cell are discussed.From the Boltzmann equation, the hydrodynamic equations are derived, but this model consumes much computational time for simulation. The drift-diffusion approximation model and the local field approximation model are obtained to simplify the numerical computation, and the approximation conditions of these two models are discussed in detail. The drift-diffusion approximation model gives more satisfactory result for PDP simulation, and the expression of energy balance equation is given completely in this model.  相似文献   

4.
An experimental system of AC arc discharge in water was designed with pole-pole electrodes and a peak voltage of 1500 V and a test circuit was set up using virtual instrument technology. The mechanism of an AC plasma arc generated in water was analyzed. The voltage- current characteristic of the AC plasma arc was obtained from the waveform. The temperature characteristic was tested with a spectrum diagnosis system, and the effect of different electrode materials on the striking voltage and peak current was analyzed. The results show that when a power supply of 6 KW is applied on electrodes with a gap of 2 mm in water, the striking voltage is from 900 to 1300 V, the arc voltage is from 40 to 100 V, the arc current is from 2 to 7 A, and the zero rest period is from 1 to 2 ms. In addition, the arc voltage and current are different for electrodes in aluminum, copper and stainless steel. The arc voltage is lower and the current is higher for an aluminum electrode than those for copper and stainless steel ones. The highest temperature of the arc is 7643 K.  相似文献   

5.
Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas mixture in current researches of discharge characteristics of the plasma display panel (PDP). It is doubtful that whether their results match the facts. Based on the Townsend gas self-sustaining discharge condition and the chemical kinetics analysis of the Penning gas mixture discharging in PDP, the empirical equation to describe the breakdown of the Penning gas mixture is given. It is used to calculate the breakdown voltage curves of Ne-Xe/MgO and Ne-Ar/MgO in a testing macroscopic discharge cell of AC-PDP. The effective secondary electron emission coefficients (γeff) of the MgO protective layers are derived by comparing the breakdown voltage curves obtained from the empirical equation with the experimental data of breakdown voltages. In comparison with the results calculated by the Paschen law and the equation which ignore the influence of the Penning ionization on α , the results calculated by the empirical equation have better conformity with experimental data. The empirical equation characterizes the breakdown of the Penning gas mixture in PDP effectively, and gives a convenient way to study its breakdown characteristics and the secondary electron emission behaviors.  相似文献   

6.
In this study, a dielectric barrier discharge device with needle-plate electrodes was used to investigate the characteristics of the micro-discharge in argon at one atmospheric pressure by an optical method. The results show that there are two discharge modes in the dielectric barrier discharge, namely corona mode and filamentary mode. The corona discharge only occurs in the vicinity of the needle tip when the applied voltage is very low. However, the filamentary discharge mode can occur, and micro-discharge bridges the two electrodes when the applied voltage reaches a certain value. The extended area of micro-discharge on the dielectric plate becomes larger with the increase in applied voltage or decrease in gas pressure. The variance of the light emission waveforms is studied as a function of the applied voltage. Results show that very short discharge pulse only appears at the negative half cycle of the applied voltage in the corona discharge mode. However, broad hump (about several microseconds) can be discerned at both the negative half cycle and the positive half cycle for a high voltage in the filamentary mode. Furthermore, the inception voltage decreases and the width of the discharge hump increases with the increase in applied voltage. These experimental phenomena can be explained qualitatively by analyzing the discharge mechanism.  相似文献   

7.
In this paper, a pulsed discharge plasma(PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7(AO7) exhausted granular activated carbon(GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water p H, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial p H value of the solution for GAC regeneration. Analyses of scanning electron microscope(SEM), Boehm titration, Brunauer-Emmett-Teller(BET), Horvath-Kawazoe(HK), and X-ray Diffraction(XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage;the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis,there were no new substances produced on the GAC after PDP treatment.  相似文献   

8.
This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images.The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source.The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width (within 150 ns),but reduced when the gas gap was packed with pellets.The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary dfscharges in the dielectric barrier discharge reactor,but they were almost equal in the packed-bed reactor.It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets,and the ICCD images confirmed it.  相似文献   

9.
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26× 1013 and 1.74× 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastableHe2* in an atmospheric-pressure plasma jet array.  相似文献   

10.
In this paper, a long line-shape dielectric barrier discharge excited by a nanosecond pulse and AC is generated in atmospheric air for the purpose of discussing the uniformity, stability and ability of aramid fiber treatment. The discharge images, waveforms of current and voltage,optical emission spectra, and gas temperatures of both discharges are compared. It is found that nanosecond pulsed discharge has a more uniform discharge morphology, higher energy efficiency and lower gas temperature, which indicates that nanosecond pulsed discharge is more suitable for surface modification. To reduce the water contact angle from 96° to about 60°, the energy cost is only about 1/7 compared with AC discharge. Scanning electron microscopy,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy are employed to understand the mechanisms of hydrophilicity improvement.  相似文献   

11.
This paper is concerned with the application of pMOS dosimeters to measuring neutron dose by the use of hydrogenous materials to convert incident neutron flux to recoil protons. These latter charged particles can generate electron-hole pairs, and consequently, charge trapping takes place at the MOS interfaces, and threshold voltage shifts are produced. The use of pMOS devices for measuring gamma doses has been described extensively in the literature. Clearly, if measurable voltage shifts could be generated in a MOS device by neutrons, then a radiation detection instrument containing two MOS devices, back to back, with hydrogenous shields, and one MOS dosimeter without a converter would allow 4π measurements of neutron and gamma doses to be made. The results obtained in this study indicate that paraffin or polyethylene will convert incident, 2.82 MeV neutrons to recoil protons, which subsequently cause measurable voltage shifts  相似文献   

12.
In this paper,volume coupled surface barrier discharge(V-SBD) with three structures possessing different volumes is excited by sine AC power in atmospheric air.Discharge images,waveforms of applied voltage and discharge current,and optical emission spectra simulating rotational and vibrational temperatures are recorded and analyzed.The effects of applied voltage on emission intensities of N_2(C~3Π_u→ B~3Π_g) and N_2~+(B~2∑_u~+ → X~2E_g~+),and rotational and vibrational temperatures are investigated.The results show that as applied voltage rises,emission intensities and rotational temperatures increase while vibrational temperatures decrease.In addition it is found that,as applied voltage varies,the rotational temperature of surface discharge changes faster than that of volume discharge.  相似文献   

13.
The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse. Presently, a complete prediction model that can predict the discharge pulse in the high-current stage does not exist. In this study, a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model. The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current, discharge current, voltage, and gas flow under actual working conditions. The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms. The pulse waveforms obtained using the model are found to be consistent with the experimental results. The model is used to evaluate the process of rapid changes in plasma density. Additionally, this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.  相似文献   

14.
With regard to the lower density and energy of electrons in pulsed discharge plasma (PDP) at atmosphere, leading to the lower energy utilization of plasma, we propose a MgO cathode to enhance the plasma intensity according to field emission principle. The MgO cathode is prepared by an electro-depositing MgO film on a stainless steel plate. This way, the positive charges come to the cathode and accumulate on the surface of the MgO film, leading to the enhancement of the electric field intensity between the cathode and MgO film, and result in the strong emission of secondary electrons from the MgO cathode. As a result, the intensity of plasma can be enhanced. Herein, the effect of the MgO cathode on the intensity of PDP is investigated. It was shown that the discharge peak current was improved by 20% compared with that of without the MgO cathode. With increasing the MgO film thickness, discharge intensity, including the peak current, transforming charge and spectrum intensity first increased and then decreased. Higher enhancement of peak current, transforming charge and spectrum intensity were acquired with a higher peak voltage. Compared to a cathode without MgO film, the ozone production is higher with MgO cathode employed. The research proposes a novel approach for improving the intensity of discharge plasma, and also provides a reference for further application of PDP.  相似文献   

15.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

16.
Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard (OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70°C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge (LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge (HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging. The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage.  相似文献   

17.
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.  相似文献   

18.
A magneto-hydrodynamic simulation of a plasma focus device with hemisphere electrodes is constructed. The snowplow model is used with help of the momentum conservation equation to describe the motion of the plasma sheath between the two concentric hemispheres. The model simulates various plasma parameters like plasma temperature and plasma sheath velocity. The circuit equation is used to calculate the discharge current and electrodes voltage across the two hemisphere terminals. A comparison between the cylindrical and spherical devices is built. The results show that the current dip and the spike voltage is expected to be much pronounced in the spherical devices. It is found also that the plasma sheath velocity and temperature in the case of the cylindrical system are higher than that in the spherical one.  相似文献   

19.
Experimental study of the low-pressure hybrid RF discharge with both inductive and capacitive channels was carried out. The RF power unit consists of inductor(antenna) and capacitor plates connected in parallel to the same RF power source. A separating capacitor Csepis included into the circuit between the antenna ends and the lead connected to the discharge capacitor plate in order to prevent the closing of the capacitive circuit through direct current by inductor and to control the contribution of capacitive channel to discharge sustaining. It is shown that at low power of the RF power source, power coupling to the discharge mainly occurs through the capacitive channel. Increasing the power of the RF power source increases the power coupled in the inductive channel, electron density, and current flowing through the capacitive channel. This leads to increasing voltage drop on the separating capacitor and partial cutoff of the capacitive channel. At separating capacitance values below certain value(below 50 pF in the present experiments), the self-bias of the loaded plate of the discharge capacitor becomes positive indicating that the thickness of the electrode sheath of the loaded electrode decreases compared to thickness of the sheath of the grounded electrode. The thickness of the space-charge sheath of the grounded electrode decreases with increasing power coupled to the plasma. At separating capacitance below 50 pF, higher harmonics of the RF voltage and current are actively generated in the capacitive discharge channel. Increasing the separating capacitance leads to decreasing electron density, increasing effective electron temperature and more effective RF energy coupling to plasma due to increasing relative importance of the capacitive discharge channel.  相似文献   

20.
In this paper, the air plasma jet produced by micro-hollow cathode discharge(MHCD) is investigated. The discharge is powered by a positive nanosecond pulse high voltage supply. The waveforms of the discharge, the images of the jet, the evolution of the plasma bullet and the reactive species are obtained to analyze the characteristics of the MHCD plasma jet. It is found that the length of the plasma jet is almost proportional to the air flow rate of 2–6 slm. Two plasma bullets appear one after another during a single period of the voltage waveform, and both of the two plasma bullets are formed during the positive pulse voltage off. The propagation velocity of the two plasma bullets is on the order of several hundred m/s, which is approximate to that of the air flow. These results indicate that the gas flow has an important influence on the formation of this MHCD plasma jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号