共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
薄壁方管作为一种典型工程构件,在建筑、海洋、航天等领域应用广泛,其结构面临遭受重复爆炸的风险,开展薄壁方管在重复爆炸载荷作用下的动力响应研究具有重要现实意义。采用实验与数值模拟相结合的方法,对比分析了薄壁方管在单次和重复爆炸载荷作用下的动力响应。将壁厚4 mm、横截面边长100 mm的薄壁方管置于爆炸场中进行冲击实验,并利用非线性动力有限元程序LS-DYNA完全重启动功能及流体与固体耦合算法,对薄壁方管在单次爆炸和重复爆炸载荷下的非线性动力响应过程进行三维数值模拟;描述了方管在不同爆炸次数下的动力响应及损伤变形,给出了一种通过损伤因子反映爆炸载荷作用后材料损伤劣化的数值计算方法。研究结果表明:方管在重复爆炸作用下的变形会产生损伤积累;相同爆炸载荷作用下已变形损伤的方管相对无损方管其有效应变增量更大,在迎爆点周围区域、侧边以及塑性铰位置,前者有效应变增量达到了后者的2.47~3.88倍,容易引起方管更严重的毁伤;两侧边是方管较脆弱的区域,极易因应力集中产生较大的塑性应变,需要特别加强防护。 相似文献
8.
9.
10.
基于数字图像相关(DIC)方法搭建了三维动态 DIC方法测试系统,利用冲击加载实验设备,对喷涂散斑的铝靶板进行冲击加载实验,获得了靶板的实时离面位移场;并利用安装在水靶舱壁面的压力传感器,测取了水中冲击波压力时程曲线;建立了针对冲击实验的二维轴对称仿真模型,分析了水靶舱内冲击波的形成与传播过程以及靶板的动态响应变形进程。研究结果表明,靶板的变形是由边界向中心呈环形扩展的,而且靶板极容易在法兰约束边界处出现剪裂现象。靶板实时变形与测点压力时程的实验值与仿真值具有良好的一致性,这表明结合三维动态DIC方法测试系统与等效加载设备可以实现对结构的水下冲击响应分析研究工作。 相似文献
11.
12.
了解气体发生器支撑结构的冲击环境对于其结构动态响应分析和参数设计至关重要。采用LS-DYNA程序对支撑结构冲击实验进行了数值仿真,对其材料动态性能参数进行了标定。利用实测结果,对载荷特性参数进行了数值验证计算,获得了压力峰值。对3种支撑结构在该压力载荷作用下的)中击变形特性进行了数值预测,获得了能正常工作的改进方案,为支撑结构参数设计和实际试验提供了参考依据。 相似文献
13.
14.
15.
采用改进的枪击试验(12.7 mm机枪)对Φ100 mm×45 mm(1#)、Φ50 mm×100 mm(2#)、Φ75 mm×150 mm(3#)和Φ100 mm×200 mm(4#)四种不同尺寸PBX-2炸药柱进行试验,测试了子弹在样品中的穿行时间和子弹撞击样品后的速度,测量了炸药的反应超压,分析了枪击试验中PBX-2炸药的响应规律。结果初步表明,枪击试验中随着PBX-2炸药长度的增加,其反应程度也随之增强。采用ANSYS/LS-DYNA程序对1#、2#和4#样品的枪击试验进行了数值模拟,计算结果与试验测试结果基本一致。 相似文献
16.
采用2 kg小钝头弹丸、针状弹丸和平头弹丸分别对PBX-2炸药进行了Steven试验,试验中采用锰铜压力计和聚偏二氟乙烯(PVDF)压电式压力传感器测试了样品中的压力变化过程,通过高速录像照片分析了点火反应过程; 通过冲击波超压传感器测量了炸药的反应超压,分析了Steven试验中不同形状弹头撞击的影响规律.结果初步表明,Steven试验中由于平面撞击产生的强剪切带作用使得炸药反应更剧烈,平头弹丸撞击时PBX-2炸药反应程度更高. 相似文献
17.
冲击载荷作用下多孔材料符合结构防爆理论计算 总被引:21,自引:2,他引:19
多孔材料具有减震和吸收冲击能量的特点,但是单一的多孔材料强度较低,为降低爆炸冲击载荷对结构的破坏,在混凝土墙壁或者两层装甲钢板中间添加一层或者几层多孔吸能材料(多孔聚氨酯、泡沫铝、铁等)构成多层复合抗爆结构,实现防爆和衰减冲击波的功能。当炸药爆炸驱动飞片高速冲击多层复合结构时,多孔材料产生塑性变形被压实。由于多孔材料冲击波阻抗很低,能够大大地削减应力波的强度。在这个过程中,飞片的冲击能量被减小,和单层结构相比,防爆能力被提高。为研究多层复合结构的防爆机理,应用冲击载荷下的材料动态本构关系,对冲击波在“钢板一多孔材料一钢板”3层介质中的传播规律和各层介质中的冲击载荷进行甘算,并对应力波在多孔材料复合结构中的衰减变化过程进行一维理论分析。 相似文献
18.
19.
采用用热力耦合方法,选择有限元软件ANSYS/LS_DYNA中带热效应的弹性-粘塑性材料模型,考虑炸药自身的反应放热,以生热速率模拟炸药发生的化学放热反应,研究了混合炸药在落锤撞击下的点火特性和热点形成规律。以Comp.B炸药为算例,建立了撞击感度的有限元模型。结果表明,该数值模拟法模拟炸药瞬态放热和炸药内部产生的急剧温升是可行的。随着上击柱速度的增大,Comp.B炸药内部的高温热点越易形成。当上击柱速度为5 m·s-1时热点温度增大,0.7 ms时形成接近或超过临界温度的热点并发生点火反应。计算结果为判断炸药撞击点火提供了理论依据。 相似文献