首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of carbon ceramic electrode (CCE) modified with platinum particles was studied for the electrocatalytic oxidation of methanol and ethanol by cyclic voltammetry and chronoamperometry. After preparation of a carbon ceramic as an electrode matrix by sol–gel technique, its surface was potentiostatically coated with Pt nanoparticles at −0.2 V vs. SCE in an aqueous solution of 0.1 M H2SO4 containing 0.002 M H2PtCl6. The electrocatalyst was characterized by XRD, SEM and cyclic voltammetry. The effective parameters on electrocatalytic oxidation of the alcohols, i.e. the amount Pt loadings, medium temperature and working potential limit in anodic direction were investigated and the results were discussed. This modified electrode showed an enhanced current density over the other Pt-modified electrodes making it more attractive for fuel cell applications.  相似文献   

2.
The present work has been undertaken to tailor Pt/Al2O3 catalysts active for NO oxidation even after severe heat treatments in air. For this purpose, the addition of Pd has been attempted, which is less active for this reaction but can effectively suppress thermal sintering of the active metal Pt. Various Pd-modified Pt/Al2O3 catalysts were prepared, subjected to heat treatments in air at 800 and 830 °C, and then applied for NO oxidation at 300 °C. The total NO oxidation activity was shown to be significantly enhanced by the addition of Pd, depending on the amount of Pd added. The Pd-modified catalysts are active even after the severe heat treatment at 830 °C for a long time of 60 h. The optimized Pd-modified Pt/Al2O3 catalyst can show a maximum activity limited by chemical equilibrium under the conditions used. The bulk structures of supported noble metal particles were examined by XRD and their surface properties by CO chemisorption and EDX-TEM. From these characterization results as well as the reaction ones, the size of individual metal particles, the chemical composition of their surfaces, and the overall TOF value were determined for discussing possible reasons for the improvement of the thermal stability and the enhanced catalytic activity of Pt/Al2O3 catalysts by the Pd addition. The Pd-modified Pt/Al2O3 catalysts should be a promising one for NO oxidation of practical interest.  相似文献   

3.
E.H. Yu  K. Scott  R.W. Reeve 《Fuel Cells》2003,3(4):169-176
A study of O2 reduction in 1 M NaOH solution at gas diffusion electrodes made from carbon supported Pt and Pt/Ru catalysts is reported. Two Tafel regions were observed for both the Pt and Pt/Ru electrodes. Although the same mechanism was suggested for oxygen reduction on both Pt and Pt/Ru catalysts, the O2 reduction activity was lower on Ru. Electrochemical Impedance Spectroscopy (EIS) analysis was carried out at different potentials and showed the significant contribution of diffusion on the reaction process and kinetics. The effect of methanol on O2 reduction was investigated in solutions containing various concentrations of methanol. The electrode performance deteriorated with increasing methanol concentration because of a mixed cathode potential. The methanol tolerance, i. e., the methanol concentration which polarises the O2 reduction reaction for O2 reduction, at the Pt/C electrode with a Pt loading of 1.2 mg cm–2 is 0.2 M methanol in 1 M NaOH.  相似文献   

4.
Electrochemical behavior of peroxyacetic acid (PAA) and hydrogen peroxide (H2O2) was examined at various metal and carbon electrodes (i.e., Au, Ag, Cu, Pt, Pd, Rh, Ti, W, Hg, Ni, Fe, glassy carbon (GC), and basal-plane pyrolytic graphite (BPG)) in 0.1 M acetate buffer solution (pH 5.5) using potentiostatic (i.e., cyclic voltammetry and rotating disk electrode voltammetry) and galvanostatic techniques. It was found that the electro-reductions of PAA and H2O2 are highly sensitive to electrode material. Both species were found to be electrochemically and separately reduced at Au, Ag, Cu, Pt, Pd, GC, and BPG electrodes. On the other hand, at Fe, Ni, Hg, Rh, Ti, and W electrodes, voltammetric response for the PAA reduction was not obviously observed. The kinetics of electro-reduction of PAA in 0.1 M acetate buffer solution was studied at Au, Ag, and GC electrodes in details, and the relevant kinetic parameters (i.e., the exchange current density, j0, the standard rate constant, k0, and cathodic transfer coefficient, αc) were estimated from the Tafel plots. The cyclic voltammetric reduction peak potentials obtained for the PAA reduction at Au, Ag, and GC electrodes were compared with those calculated using the kinetic and thermodynamic parameters obtained under the same experimental conditions. The measured and calculated reduction peak potentials at each electrode were found to be in agreement with each other, indicating that the evaluated values of kinetic parameters for the reduction of PAA at Au, Ag, and GC electrodes are reasonable.  相似文献   

5.
A glassy carbon electrode modified with MCM-41 and bimetallic inorganic–organic nanofiber hybrid nanocomposite was prepared and used for determination of trace levels of hydrogen peroxide (H2O2). The direct electron transfer (DET) and electrocatalysis of hemoglobin (Hb) entrapped in the MCM-41 modified Au–Pt inorganic–organic nanofiber hybrid nanocomposite electrode (Au–PtNP/NF/GCE) were investigated by using cyclic voltammetry in 0.1 M pH 7.0 phosphate buffer solution. Due to its uniform pore structure, high surface area and good biocompatibility, the mesoporous silica sieve MCM-41 provided a suitable matrix for immobilization of biomolecules. The MCM-41 modified Au–Pt inorganic–organic nanofiber hybrid nanocomposite electrode showed significant promotion to DET of Hb, which exhibited a pair of well-defined and quasi-reversible peaks for heme Fe(III)/Fe(II) with a formal potential of ?0.535 V (vs. Ag/AgCl). Additionally, the Hb immobilized on the MCM-41 modified electrode showed excellent electrocatalytic activity toward H2O2 reduction.  相似文献   

6.
A new electrochemical sensor based on copper nanoparticles for detection of hydrogen peroxide has been developed. Copper nanoparticles/Rutin/Multiwall Carbon Nanotubes/Ionic liquid/Chitosan modified glassy carbon electrode (CuNPs/Rutin/MWCNTs/IL/Chit/GCE) prepared by consecutive coating of MWCNTs/IL/Chit nanocomposite and rutin on the GCE, followed by the electrodeposition of copper. Surface physical characteristics of modified electrode were studied by scanning electron microscopy (SEM). The electrochemical performance of the sensor for detection of H2O2 was investigated by cyclic voltammetry and chronoamperometry techniques. The modified electrode exhibits an enhanced electrocatalytic property, low working potential, high sensitivity, excellent selectivity, good stability, and fast amperometric sensing towards reduction of hydrogen peroxide. The response to H2O2 is linear in the range between 0.35 μM to 2500 μM, and the detection limit is 0.11 μM.  相似文献   

7.
Two types of O2,Pt/YSZ electrode preparation (Pt/YSZ cermet and sputtered platinum film) have been characterized by SEM and by cyclic voltammetry and chronoamperometry at 450 °C in 20 kPa oxygen. Cyclic voltammetry on the cermet and on the as-sputtered non-porous film electrode evidenced the characteristics of the PtO x /Pt couple. The corresponding redox reaction occurs at the metal/electrolyte interface and it manifests itself by an anodic wave and one of more cathodic peaks in the voltammogram. Heat treatment of the sputtered electrode at 700 °C in oxygen atmosphere resulted in a porous structure by coalescence of the film. Cyclic voltammetry of the porous film electrode featured the characteristics of the O2/O2− couple, i.e. the redox reaction of gaseous oxygen occurring at the tpb. Chronoamperometry at anodic potentials showed similar features for both electrode preparations: an initial inhibition, a current peak and a slow activation, the latter being related to the phenomenon of electrochemical promotion of catalysis.  相似文献   

8.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

9.
G. Roventi 《Electrochimica acta》2006,51(13):2691-2697
Zn-Co alloy electrodeposition from chloride baths containing different Zn2+/Co2+ ratios was investigated by cyclic voltammetry and anodic linear sweep voltammetry using a Pt electrode. The peaks were attributed by means of EDX analysis, SEM and TEM observations performed on some alloys potentiostatically deposited. In the range of potential where zinc deposits underpotential, cyclic voltammetry showed a complex cathodic peak with one maximum and two shoulders, correlated with the deposition of different cobalt rich alloys. Up to four anodic peaks, two correlated with zinc oxidation from η and γ phases and two correlated with oxidation of solid solutions of zinc in cobalt, were observed. ALSV and TEM indicated that the remarkable increase in Zn content of the alloy, which occurs with a strong inhibition of the process at potentials more negative than that of the cathodic peak and more positive than the bulk deposition potential of zinc, is due to the deposition of γ phase. No inhibition of the alloy deposition process was observed with very low concentrations of zinc (<0.015 M) in the bath containing 0.19 M Co2+.  相似文献   

10.
The poly-1,5-diaminoanthraquinone (P15DAAQ) modified Pt electrodes show electrocatalytic activity for oxygen reduction reaction (ORR) with oxygen reduction peak at about 0.39 V in 0.1 M H2SO4. The P15DAAQ with different thickness has different morphology. The effects of morphologies on the electrocatalytic behaviors of P15DAAQ for oxygen reduction reaction are investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements. We propose two different O2-transport processes on electrodes modified with thin P15DAAQ and thick P15DAAQ. Together with the quantitative analysis with O2-transport dynamics, electron-transfer resistance, and catalytic reaction rate during ORR, thin P15DAAQ electrode performs better electrocatalysis for ORR, although thick P15DAAQ provides higher real surface area and more reactive sites which is beneficial for ORR within a short time.  相似文献   

11.
Dun Zhang 《Electrochimica acta》2007,52(17):5400-5406
The electrocatalysis of the dual functional catalysts system composed of electrolytic nano-manganese oxide (nano-MnOx) and cobalt octacyanophthalocyanine (CoPcCN) toward 4-electron reduction of oxygen (O2) in alkaline media was studied. Nano-MnOx electrodeposited on the CoPcCN monolayer-modified glassy carbon (GC) electrode was clarified as the nano-rods with ca. 10-20 nm diameter by scanning electron microscopy. The peak current for O2 reduction at the dual catalysts-modified GC electrode increases largely and the peak potential shifts by ca. 160 mV to the positive direction in cyclic voltammograms compared with those obtained at the bare GC electrode. The Koutecký-Levich plots indicate that the O2 reduction at the dual catalysts-modified GC electrode is an apparent 4-electron process. Collection efficiencies obtained at the dual catalysts-modified GC electrode are much lower than those at the GC electrode and are almost similar to those at the Pt nano-particles modified GC electrode. The obtained results demonstrate that the dual catalysts system possesses a bifuctional catalytic activity for redox-mediating 2-electron reduction of O2 to HO2 by CoPcCN as well as catalyzing the disproportionation of HO2 to OH and O2 by nano-MnOx, and enables an apparent 4-electron reduction of O2 at a relatively low overpotential in alkaline media. In addition, it has been found that the cleaning of the dual catalysts-modified electrode by soaking in 0.1 M sulfuric acid solution enhances its catalytic activity toward the reduction of O2.  相似文献   

12.
The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H2SO4. Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of −350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H2O2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles.  相似文献   

13.
A series of ordered mesoporous carbon (OMC) supported Pt (Pt/OMC) catalysts with a controlled Pt size from 2.7 to 6.7 nm at high Pt loading around 60 wt.% have been prepared and their electrocatalytic activities for the electrode reactions relevant to the direct methanol fuel cells have been investigated. The Pt/OMC catalysts with a high dispersion (Pt size around 3 nm) could be prepared by the use of a modified, sequential impregnation–reduction method. The Pt/OMC catalysts containing larger Pt particles were obtained by increasing reduction temperature under hydrogen flow and Pt loading, and by performing impregnation–reduction in a single cycle. The oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities of Pt/OMC catalysts as a function of Pt size were investigated at room temperature in 0.1 M HClO4 and (0.1 M HClO4 + 0.5 M methanol), respectively. The specific activity of Pt/OMC for ORR steeply increased up to 3.3 nm and became independent of Pt size from 3.3 to 6.7 nm, and the mass activity curve exhibited maximum activity at 3.3 nm. The MOR activity of Pt/OMC also exhibited the similar trend with the ORR activity, as the maximum of mass activity was also found at 3.3 nm. The results of the present work indicate that the Pt catalysts of ca. 3 nm is an optimum particle size for both ORR and MOR, and this information may be translated into design of high performance membrane electrode assembly.  相似文献   

14.
The sulfonated reduced graphene oxide (S-rGO) as supports and size-controlled Pt nanoparticles (NPs) for proton exchange membrane fuel cell (PEMFC) catalysts was investigated. The S-rGO was fabricated by a lyophilization-assisted method from a liquid mixture of GO and (NH4)2SO4 with a subsequent thermal treatment in inert gas. Sulfonic acid groups were grafted on GO and a reduction of GO was achieved simultaneously. Transmission electron microscope (TEM) results showed a uniform deposition of Pt NPs on S-rGO (Pt/S-rGO) with a narrow particle size distribution ranging from 2 to 5 nm in diameter. A higher catalytic activity of this novel Pt/S-rGO catalyst was revealed in comparison with that of Pt/GO, Pt/rGO and conventional Pt/C catalysts by cyclic voltammetry and oxygen reduction reaction measurements due to an enhanced triphase boundary. Significantly, the Pt/S-rGO catalyst also presented an excellent electrochemical stability. This new catalyst thus holds a great potential application in PEMFCs in terms of enhanced activity and durability.  相似文献   

15.
The oxygen reduction reaction (ORR) catalyzed by Pt was studied in the presence of Co2+ using cyclic voltammetry (CV), rotating disk electrode (RDE), and rotating ring-disk electrode (RRDE) techniques in an effort to understand fuel cell cathode contamination caused by Co2+. Findings indicated that Co2+ could weakly adsorb on the Pt surface, resulting in a slight change in ORR exchange current densities. However, this weak adsorption had no significant effect on the nature of the ORR rate determining steps. The results from both RDE and RRDE indicated that the overall electron transfer number of the ORR in the presence of Co2+ was reduced, with ∼9% more H2O2 being produced. We speculate that the weakly adsorbed Co2+ on Pt could react with the H2O2 intermediate and form a Co2+-H2O2 intermediate, inhibiting the further reduction of H2O2 and thus resulting in more H2O2 production. The fuel cell performance drop observed in the presence of Co2+ could be attributed to the reduction in overall electron transfer number and the increase in H2O2 production. Higher production could intensify the attack by H2O2 and its radicals on membrane electrode assembly components, including the ionomer, carbon support, Pt particles, and membrane, leading to fuel cell degradation.  相似文献   

16.
The electrodeposition of Pd onto Pt(1 1 1) from PdCl2 and PdSO4 containing solutions was studied by cyclic voltammetry and in situ scanning tunnelling microscopy. Pd deposition starts by forming a pseudomorphic monolayer in both cases. While in the presence of chloride this monolayer is deposited at underpotentials, its formation in chloride-free solution is kinetically hindered to such an extent that the deposition peak is shifted negative of the equilibrium potential. Detailed structure information has been obtained from STM data about the Pd layer as well as the co-adsorbed anions. Bulk deposition from the chloride-containing solution proceeds via a quasi layer-by-layer fashion. However, the particular electrochemical properties of the first Pd monolayer disappear only after deposition of the equivalent of four more Pd layers. The electrochemical behaviour of such films is similar to that of a rough Pd(1 1 1) surface. Pd bulk deposition from chloride-free solution leads to the formation of three-dimensional clusters from the very beginning. About 10 ML equivalents are needed in that case to completely cover the first Pd monolayer.  相似文献   

17.
The electrocatalytic reduction of hydrogen peroxide (H2O2) has been studied at nanostructured copper (Cunano) modified glassy carbon (GC/Cunano) electrode in phosphate buffer (pH 7.2). The electrical properties of GC/Cunano modified electrodes were studied by electrochemical impedance spectroscopy (EIS). Surface and electrochemical characterization were carried out by using atomic force microscopy (AFM) and cyclic voltammetry. A well-defined H2O2 reduction signal, which is due to mediation of a surface active site redox transition exhibits at the GC/Cunano electrode. The Cunano is acting as a bridge without the aid of any other electron mediator, which enables the direct electron transfer between the modified electrode and the substrate. The results are compared with bulk copper macroelectrode and emphasized the efficiency of the Cunano modified electrode. Systematic investigations were made to optimize the experimental parameter, such as applied potential (Eapp) for copper electrodeposition. The calibration curve obtained from chronoamperometric studies was found to be linear in the range 0.5 to 8.0 μM H2O2 with a detection limit of ca.10 nM (S/N = 3) at the GC/Cunano electrode. The modified electrode is stable for 1 week in phosphate buffer after repetitive measurements.  相似文献   

18.
《Ceramics International》2022,48(16):23137-23144
The detection of glucose (Glu) is of great significance in medical diagnosis, food processing and biotechnology. Rapid, accurate and convenient detection technology is particularly important. Herein, the Co3O4-PC nanocomposite grown on biomass-derived porous carbon (PC) was prepared by hydrothermal method and subsequent air calcination. Chitosan (CS) was electrodeposited on the surface of Co3O4-PC by potentiostatic deposition with Glu as the template molecule. Finally, the template molecule was eluted by cyclic voltammetry to create specific recognition sites for Glu, and a highly selective and stable Glu sensor was constructed. The obtained MIP (molecularly imprinted polymer)-Glu-CS/Co3O4/PC nanocomposites were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, chronoamperometry and so on. The results showed that the MIP-Glu-CS/Co3O4-PC had great catalytic performance for Glu detection with a linear range of 12.17 μM-2.3 mM, a detection limit of 4.01 μM, and a sensitivity of 407.5 μA cm?2 mM?1. The sensor has excellent selectivity and stability. This work provides a guide for improving the selectivity of nanozymes.  相似文献   

19.
Electrocatalysts of the general formula IrxRu1−xO2 were prepared using Adams’ fusion method. The crystallite characterization was examined via XRD, and the electrochemical properties were examined via cyclic voltammetry (CV) in, linear sweep voltammetry (LSV) and chronopotentiometry measurements in 0.5 M H2SO4. The electrocatalysts were applied to a membrane electrode assembly (MEA) and studied in situ in an electrolysis cell through electrochemical impedance spectroscopy (EIS) and stationary current density–potential relations were investigated. The IrxRu1−xO2 (x = 0.2, 0.4, 0.6) compounds were found to be more active than pure IrO2 and more stable than pure RuO2. The most active electrocatalyst obtained had a composition of Ir0.2Ru0.8O2. With an Ir0.2Ru0.8O2 anode, a 28.4% Pt/C cathode and the total noble metal loading of 1.7 mg cm−2, the potential of water electrolysis was 1.622 V at 1 A cm−2 and 80 °C.  相似文献   

20.
Flowerlike Co3O4 nanoparticles were used as a modifier on the glassy carbon electrode to fabricate a quercetin (Qu) sensor. The morphology and crystallinity of the prepared Co3O4 material were investigated by scanning electron microscopy and X-ray diffraction. Electrochemical behavior of Qu at the sensor was studied by cyclic voltammetry and semi-derivative voltammetry. Results suggested that the modified electrode exhibited a strong electrocatalytic activity toward the redox of Qu. The electron transfer coefficient (α), the number of electron transfer (n), and the diffusion coefficient (D) of Qu at the sensor were calculated. Under the optimum conditions, the catalytic peak currents of Qu were linearly dependent on the concentrations of Qu in the range from 5.0 × 10−7 to 3.3 × 10−4 M, with a detection limit of 1.0 × 10−7 M. This proposed method was successfully applied to determine the quercetin concentration in Ginkgo leaf tablet and human urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号