首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of oxygen pressure on the structural and electrical properties of vanadium oxide thin films deposited on glass substrates by pulsed laser deposition, via a 5-nm thick ZnO buffer, was investigated. For the purposes of comparison, VO2 thin films were also deposited on c-cut sapphire and glass substrates. During laser ablation of the V metal target, the oxygen pressure was varied between 1.33 and 6.67 Pa at 500 °C, and the interaction and reaction of the VO2 and the ZnO buffer were studied. X-ray diffraction studies showed that the VO2 thin film deposited on a c-axis oriented ZnO buffer layer under 1.33 Pa oxygen had (020) preferential orientation. However, VO2 thin films deposited under 5.33 and 6.67 Pa were randomly oriented and showed (011) peaks. Crystalline orientation controlled VO2 thin films were prepared without such expensive single crystal substrates as c-cut sapphire. The metal-insulator transition properties of the VO2/ZnO/glass samples were investigated in terms of electrical conductivity and infrared reflectance with varying temperatures, and the surface composition was investigated by X-ray photoelectron spectroscopy.  相似文献   

2.
The results of an experimental investigation of the optical properties of anodic vanadium oxide films are presented. It is shown that films of different phase composition (VO2, V2O5, or a mixture of two phases) can be obtained, depending on the oxidation regime, and that the absorption and transmission spectra are modified significantly in accordance. The optical properties of the oxides, whose composition is close to stoichiometric vanadium dioxide, demonstrate the occurrence of a metal-semiconductor phase transition in the amorphous films. The results presented are important both from the standpoint of technical applications of thin film systems based on anodic vanadium oxides and for more detailed understanding of the physical mechanism of the metal-semiconductor phase transition and the influence of structural disorder on the transition. Pis’ma Zh. Tekh. Fiz. 25, 81–87 (April 26, 1999)  相似文献   

3.
In the present work using V2O5 and MoO3 powders as precursors, a novel method, the inorganic sol-gel method, was developed to synthesize Mo6+ doped vanadium dioxide (VO2) thin films. The structure, valence state, phase transition temperature, magnitude of resistivity change and change in optical transmittance below and above the phase transition of these films are determined by XRD, XPS, four-point probe equipment and spectrophotometer. The results showed that the main chemical composition of the films was VO2, the structure of MoO3 in the films didn't change, and the phase transition temperature of the VO2 was obviously lowered with increasing MoO3 doped concentration. The magnitude of resistivity change and change in optical transmittance below and above phase transition were also decreased, of which the magnitude of resistivity change was more distinct. However, when the MoO3 concentration was 5 wt%, the magnitude of resistivity change of doped thin films still reached more than 2 orders, and the change in optical transmittance below and above phase transition was maintained. Analysis showed that the VO2 doped films formed local energy level, and then reduced the forbidden band gap of VO2 as the donor defect changing its optical and electrical properties and lowering the phase transition temperature.  相似文献   

4.
Thin films of vanadium dioxide (VO2) on glass substrates were produced by the aqueous sol-gel method. Various levels of doping were achieved by adding small quantities of a water-soluble molybdenum compound to the sol. After dip coating, the substrates were reduced by heat treatment in a low-pressure carbon monoxide/carbon dioxide (CO/CO2) atmosphere. The change in electrical conductivity with temperature, and optical reflectance in the semiconductor and metallic phases were measured and compared to undoped VO2 films. Doping the VO2 films with molybdenum lowered the transition temperature of the semiconductor-to-metal phase change; at a doping level of 7 at.% the transition temperature was measured at 24 °C, as indicated by the electrical conductivity. All the films showed a substantial change in reflectance upon heating through the transition. The optical reflectance in the semiconductor state increased slightly with additional dopant, while the reflectance in the metallic state remained constant.  相似文献   

5.
Pure vanadium dioxide (VO2) and CeOx–VO2 (1.5 < x < 2) composite thin films were grown on muscovite substrate by inorganic sol–gel process using vanadium pentaoxide and cerium(III) nitrate hexahydrate powder as precursor. The crystalline structure, morphology and phase transition properties of the thin films were systematically investigated by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, FE-SEM and optical transmission measurements. High quality of the VO2 and CeOx–VO2 composite films were obtained, in which the relative fractions of +4 valence state vanadium were above 70 % though the concentrations of cerium reached 9.77 at %. However, much of cerium compounds were formed at the edge of grains and the addition of cerium resulted in more clearly defined grain boundaries as shown in SEM images. Meanwhile, the composite films exhibited excellent phase transition properties and the infrared transmittance decreased from about 70 to 10 % at λ = 4 μm bellow and above the metal–insulator phase transition temperature. The metal–insulator phase transition temperatures were quite similar with about 66 °C of the pure VO2 and CeOx–VO2 composite thin films. But hysteresis widths increased with more addition of cerium, due to the limiting effect of grain boundaries on the propagation of the phase transition. Particularly, the CeOx–VO2 composite film with an addition of 7.82 at % Ce showed a largest hysteresis width with about 20.6 °C. In addition, the thermochromic performance of visible transmittance did not change obviously with more addition of cerium.  相似文献   

6.
Vanadium dioxide (VO2) thin films have been shown to undergo a rapid electronic phase transition near 70 °C from a semiconductor to a metal, making it an interesting candidate for exploring potential application in high speed electronic devices such as optical switches, tunable capacitors, and field effect transistors. A critical aspect of lithographic fabrication in devices utilizing electric field effects in VO2 is the ability to grow VO2 over thin dielectric films. In this article, we study the properties of VO2 grown on thin films of Yttria-Stabilized Zirconia (YSZ). Near room temperature, YSZ is a good insulator with a high dielectric constant ($\epsilon _{\rm r} > 25$\epsilon _{\rm r} > 25). We demonstrate the sputter growth of polycrystalline VO2 on YSZ thin films, showing a three order resistivity transition near 70 °C with transition and hysteresis widths of approximately 7 °C each. We examine the relationship between chemical composition and transition characteristics of mixed phase vanadium oxide films. We investigate changes in composition induced by low temperature post-deposition annealing in oxidizing and reducing atmospheres, and report their effects on electronic properties.  相似文献   

7.
VO2 films have been prepared on normal microscope glass slides by reactive rf magnetron sputtering of vanadium target in a mixture of argon and oxygen. Optical properties of the films were investigated by the UV/Vis/NIR Perkin–Elmer Lamda 9. Transmission electron microscope and atomic force microscope were used to investigate the structure of the films. Correlation between structural and optical properties of VO2 thin films is investigated with respect to the dependence of both to substrate temperature.  相似文献   

8.
With bolometer application in mind, we prepared VO2 films on TiO2 (001) substrates by an excimer-laser-assisted metal organic deposition process at 300 °C or less. A metal-to-insulator transition of VO2 is expected to induce high temperature coefficient of electrical resistance (TCR) useful for high-performance infrared sensors, but the practical use of crystalline VO2 films has been prevented due to the accompanied wide hysteresis. In this study, by forming the epitaxial phase only near the substrate interface, the transition of the film was successfully broadened and the hysteresis disappeared. The maximum TCR of the film was more than -10%/°C near room temperature, and the temperature range in which TCR was higher than -4%/°C was very wide (280-320 K).  相似文献   

9.
Thermochromic films of VO2 were deposited by DC reactive magnetron sputtering on stainless steel substrate. Complex refractive indexes of VO2 were determined by ellipsometric spectroscopy (0.35-16.5 μm) for different film thicknesses. Optical simulations were performed to model the spectral reflectance of the film/substrate system for a film thickness of 100 nm and 200 nm and to monitor the optical contrast of the thermochromic layers by comparing the spectral reflectance at 25 °C and 100 °C. The good agreement observed between experimental and theoretical spectra demonstrates the adequacy of the model for predicting the optical properties of the samples.  相似文献   

10.
Single-phase monoclinic vanadium dioxide (VO2) films were grown on a Si(100) substrate using inductively coupled plasma (ICP)-assisted sputtering with an internal coil. The VO2 film exhibited metal-insulator (M-I) transition at around 65 °C with three orders of change in resistivity, with a minimum hysteresis width of 2.2 °C. X-ray diffraction showed structural phase transition (SPT) from monoclinic to tetragonal rutile VO2. For conventional reactive magnetron sputtering, vanadium oxides with excess oxygen (V2O5 and V3O7) could not be eliminated from stoichiometric VO2. Single-phase monoclinic VO2 growths that are densely filled with smaller crystal grains are important for achieving M-I transition with abrupt resistivity change.  相似文献   

11.
Porous nano-structured vanadium dioxide (VO2) thin films have been prepared on mica substrates via sol–gel process using surfactant cetyltrimethyl ammonium bromide, nonionic surfactant polyethylene glycol, and anionic surfactant sodium dodecyl sulfate as nano-structure directing agents. Models concerning the structure forming were proposed to explain the synthesis mechanisms between V2O5 colloid and different surfactants. Porous nano-structured VO2 films with sphere-shaped, island-shaped and strip-shaped nanocrystals are synthesized in the experiments, and the optical properties and thermochromic properties of these films are compared. The porous nano-structured VO2 films showed excellent infrared transmittance (nearly 70 %), low transition temperature (59.7 °C without doping), wide hysteresis width (37.8 °C), and different optical transmittance difference before and after the phase transition (39–67 %). The results suggest that these porous nano-structured VO2 films have significant importance in practical application in VO2-based optical and electronic devices.  相似文献   

12.
YBa2Cu3O6 + x (YBCO) compounds are well known to exhibit superconducting properties for x > 0.5 and semiconducting properties for lower oxygen content. In this work, YBCO oxide thin films of the semiconducting phase were deposited by direct-current (DC) hollow cathode sputtering at low temperature in the 100 to 400 °C range. Structural, electrical and optical properties are investigated and discussed in relation with the envisaged bolometric detection application. Structural characterizations show that films are amorphous, with a granular structure of low roughness (3 nm rms). DC electrical measurements both reveal that films grown at 100 °C exhibit a high temperature coefficient of resistance (TCR ~ − 3% K− 1 to − 4% K− 1 at 300 K) and an optimized low resistivity value of 345 Ω·cm at 300 K. Consequently, this material is suitable for uncooled infrared bolometer application and can be deposited at 100 °C in a complementary metal-oxide-semiconductor compatible technological process for co-integration with readout circuitry. In addition, optical measurements performed in the 0.5 to 2.2 μm wavelength range on films grown at 100 °C highlight optical conductivity values in line with those expected for YBCO material, as well as the presence of two optical band gaps that are discussed with respect to the film nanostructure.  相似文献   

13.
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C.  相似文献   

14.
VO2 films about 3000 Å thick have been prepared by the pyrolysis of vanadile acetylacetonate (C5H7O2)2 VO. The changes in the electrical, optical and structural properties of the films during the phase transition have been investigated. Various switching effects in VO2 films have also been studied.  相似文献   

15.
The vanadium oxide (VO2) films have been prepared on SiO2/Si substrates by using a modified Ion Beam Enhanced Deposition (IBED) method. During the film deposition, high doses of Ar+ and H+ ions have been implanted into the deposited films from the implanted beam. The resistance change of the VO2 films with temperature has been measured and the phase transition process has been observed by using the X-ray Diffraction technique. The phase transition of the IBED VO2 films starts at a low temperature of 48 °C and ends at a high temperature of 78 °C. It is found that the phase transition characteristics can be adjusted by changing the annealing temperature or the time and the phase transition characteristics of the IBED VO2 films depend on the quantity and location of argon atoms in the film matrix.  相似文献   

16.
The area of metal oxynitrides is poorly explored, and understanding of the fundamental mechanism that explains structural, mechanical, electrical, and optical properties is still insufficient. Therefore, the purpose of the present investigation is to analyze structural, electrical, and optical properties of ZrNxOy films deposited by reactive cathodic arc evaporation.Depending on the oxygen flow, cubic ZrN:O, monoclinic ZrO2:N, and tetragonal ZrO2:N phases films were prepared. The sheet resistance and the optical transmittance very much depend on the oxygen flow. Optical transparent ZrNxOy films with transmittance of 86% at 650 nm, the sheet resistance 1.1 · 103 Ω/sq, and the figure of merit 2 · 10− 4 Ω− 1 are deposited with the 60 sccm oxygen flow.  相似文献   

17.
D.Y. Ku  I. Lee  T.S. Lee  B. Cheong  W.M. Kim 《Thin solid films》2006,515(4):1364-1369
In this study, indium-zinc oxide (IZO) thin films have been prepared at a room temperature, 200 and 300 °C by radio frequency magnetron sputtering from a In2O3-12 wt.% ZnO sintered ceramic target, and their dependence of electrical and structural properties on the oxygen content in sputter gas, the substrate temperature and the post-heat treatment was investigated. X-ray diffraction measurements showed that amorphous IZO films were formed at room temperature (RT) regardless of oxygen content in sputter gas, and micro-crystalline and In2O3-oriented crystalline films were obtained at 200 and 300 °C, respectively. From the analysis on the electrical and the structural properties of annealed IZO films under Ar atmosphere at 200, 300, 400 and 500 °C, it was shown that oxygen content in sputter gas is a critical parameter that determines the local structure of amorphous IZO film, stability of amorphous phase as well as its eventual crystalline structure, which again decide the electrical properties of the IZO films. As-prepared amorphous IZO film deposited at RT gave specific resistivity as low as 4.48 × 10− 4 Ω cm, and the highest mobility value amounting to 47 cm2/V s was obtained from amorphous IZO film which was deposited in 0.5% oxygen content in sputter gas and subsequently annealed at 400 °C in Ar atmosphere.  相似文献   

18.
S.B. Wang  S.B. Zhou  X.J. Yi 《Vacuum》2004,75(1):85-90
Polycrystalline VOx thin films that were prepared for thermal-sensitive material of far infrared sensor had been deposited on Si substrates by ion beam sputtering deposition. Scanning electron microscopy images indicated that VOx thin films (oxygen pressure of 1.5×10−3 Pa) were grown into compact and ultra-fine grains (?50 nm), the film surfaces seemed smooth and uniform. Four-point probe measurements showed that the homogeneity of the films was better than 98% in a size of 30×30 mm2. The four-point probe measurement on hot plate presented the sheet resistance and the temperature coefficient of resistance of the VOx thin film that were 50 kΩ/square and −0.021 K−1 at 28°C, respectively. In addition, some samples annealed in Ar atmosphere had their resistance decreased. Thus, vanadium oxide films containing more amount VO2 were obtained.  相似文献   

19.
The structural, optical and electrical properties of InN polycrystalline films on glass substrate are investigated by means of X-ray photoelectron spectroscopy, Raman scattering measurements, X-ray diffraction analysis, optical spectroscopy, and electrical measurements as a function of the inverse of temperature. The absorption edge for the films is most likely due to an impurity band formed by the presence of defects in the material. Such an impurity band, located at 1.6 eV extends itself to about 1.8 eV above the Fermi level, and it is attributed to nitrogen vacancies present in the material. The Raman scattering data also reveal the incorporation of oxygen in the InN films, leading to the formation of the In2O3 amorphous phase during the process of sputtering. Additionally, the X-ray photoelectron spectroscopy of the valence band, which is highly desirable to the determination of the Fermi level, confirms the optical gap energy. Furthermore, the X-ray diffraction patterns of the thinner films present broader peaks, indicating high values for the strain between the film lattice and the glass substrate. Finally, first principles calculations are used to investigate the optical properties of InN and also to support the experimental findings.  相似文献   

20.
Excess oxygen and 1-at% Mg co-doped CuScO2[3R](0001) epitaxial films were prepared on a-plane sapphire substrates by combining two-step deposition and post-annealing techniques. The optical and electrical transport properties of the co-doped epitaxial films were compared with those of the CuScO2[3R](0001) epitaxial films. No significant increase in optical absorption was observed in the co-doped epitaxial films, and the energy gap for direct allowed transition was estimated at 3.7 eV. The carrier concentration of CuScO2[3R](0001) epitaxial films was controlled from ~ 1016 cm- 3 to ~ 1018 cm- 3 at room temperature by adjusting the excess oxygen and Mg co-doping. The electrical conductivity, carrier concentration, and Hall mobility of the most conductive film were 3.6 × 10- 2 Scm- 1, 8.5 × 1017 cm- 3 and 2.6 × 10- 1 cm2V- 1 s- 1 at room temperature, respectively. The temperature dependence of the electrical transport properties of the film exhibited semiconducting characteristics, and the activation energy estimated from the temperature dependence of the carrier concentration was 0.50 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号