首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compositions along the Ca2SiO4–Ca3(PO4)2 join were hydrated at 90°C. Mixtures containing 15, 38, 50, 80, and 100 mol% Ca3(PO4)2 were fired at 1500°C, forming nagelschmidtite + a 1-CaSiO4, A -phase and silicocarnotite and a -Ca3(PO4)2, respectively. Hydration of these produces hydroxylapatite regardless of composition. Calcium silicate hydrate gel is produced when Ca2SiO4≠ 0 and portlandite when Ca2SiO4 is >50%. Relative hydration reactivities are a -Ca3(PO4)2 > nagelschmidtite > α 1-Ca2SiO4 > A -phase > silicocarnotite. Hydration in the presence of silica or lime influences the amount of portlandite produced. Hydration in NaOH solution produces 14-A tobermorite rather than calcium silicate hydrate gel.  相似文献   

2.
An intimate Ba-Al-Al2O3-SiO2 powder mixture, produced by high-energy milling, was pressed to 3 mm thick cylinders (10 mm diameter) and hexagonal plates (6 mm edge-to-edge width). Heat treatments conducted from 300° to 1650°C in pure oxygen or air were used to transform these solid-metal/oxide precursors into BaAl2Si2O8. Barium oxidation was completed, and a binary silicate compound, Ba2SiO4, had formed within 24 h at 300°C. After 72 h at 650°C, aluminum oxidation was completed, and an appreciable amount of BaAl2O4 had formed. Diffraction peaks consistent with hexagonal BaAl2Si2O8, BaAl2O4, β-BaSiO3, and possibly β-BaSi2O5 were detected after 24 h at 900°C. Diffraction peaks for BaAl2O4 and BaAl2Si2O8 were observed after 35 h at 1200°C, although SEM analyses also revealed fine silicate particles. Further reaction of this silicate with BaAl2O4 at 1350° to 1650°C yielded a mixture of hexagonal and monoclinic BaAl2Si2O8. The observed reaction path was compared to prior work with other inorganic precursors to BaAl2Si2O8.  相似文献   

3.
The hydration behavior at 25°C of highly reactive β-dicalcium silicate synthesized from hillebrandite (Ca2(SiO3)(OH)2) was studied over a period of 7 to 224 d using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR). The hydration product, C-S-H, contains Q2 and Q1 silicate tetrahedra, the chemical shifts of which are independent of the water/solid (w/s) ratio and curing time. Until the reaction is completed, the amounts of Q1 and Q2 formed are independent of the w/s ratio, being determined only by the degree of reaction. The ratio Q2/Q1 increases as the reaction progresses and as the curing time becomes longer. From the values of Q2/Q1, it appears that the hydrate is a mixture of dimers and short single-chain polymers. The Ca/Si ratio of the hydrate is high, taking values close to 2.0, but the Ca/Si ratio does not influence the Q2/Q1 ratio. It was also found that the NMR peak intensities allow quantitative assessment similar to XRD.  相似文献   

4.
The liquidus-solidus relations along the join Ca2SiO4-Ca(OH), in the system CaO-SiO2-H2O have been determined at 1000 atm up to 1110°C. This join is binary and contains the calcium silicate hydrate, calciochondrodite, Ca5-(SiO4(OH)2. Calciochondrodite melts incongruently to Ca2SiO2+ liquid (composition 23 wt% Ca2Si04) at 955°C. The eutectic between calcium hydroxide and calciochondrodite lies at 13% Ca2Si04 and 822°C. Preliminary experiments, also at 1000 atm, in the ternary system CaO-Ca2Si04-Ca(OH), indicate that the eutectic at which the fields of primary Ca(OH)2, CaO, and Ca2(Si04)2(OH)2 meet is close to the CaO-Ca. (OH), side of the triangle at approximately 805° C. The ternary reaction point Ca2SiOl+ liquid ⇌Ca5(SiO4)2(OH)2+ CaO + liquid is believed to lie in the low-CaO (<5%) high-Ca(OH)2 (>70%) part of the system.  相似文献   

5.
The hydration behavior at 25°C of β-dicalcium silicate synthesized from hillebrandite (Ca2,(SiO3)(OH)2) at 600°C was studied over a period of 224 d. The hydration rate of the β-dicalcium silicate having fibrous crystals with specific surface area of 7 m2/g is extremely rapid. For water/solids ratios of 0.5 and 1.0, the hydration reaction is completed in 28 and 14 d, respectively. The hydrate contains almost no Ca(OH)2, and its Ca/Si ratio is close to 2. SEM observations indicate that the hydrate forms an outer shell on the surface of β-dicalcium silicate and grows inwards. The silicate anion structure is considered to consist of dimers and single-chain structures from 29Si MAS NMR. Variations of physical properties of press-formed bodies have also been discussed.  相似文献   

6.
α-C2SH can be synthesized by hydrothermal treatment of lime and silicic acid for 2 h at 200°C. When heated to 390–490°C, α-C2SH dissociates through a two-step process to form an intermediate phase plus some γ-C2S. This appears to be a new dicalcium silicate different from known dicalcium silicates—α, α'L, α'H, β, and γ phase—and is stable until around 900°C. At 920–960°C, all the phases are transformed to the α'L phase. The intermediate phase has high crystallinity and is stable at room temperature. 29 Si MAS NMR measurements indicate the possibility that it contains both protonated and unprotonated monosilicate anions. The intermediate phase that has passed through the α'phase at higher temperature yields β-C2S on cooling. The intermediate phase is highly active, and completed its hydration in 1 day ( w/s = 1.0, 25°C). Among the crystalline calcium silicate hydrates with Ca/Si = 2.0, it is hillebrandite that yields β-C2S at the lowest temperature.  相似文献   

7.
A preliminary study of the system Tho2-SiO2 supported the premise that the system CaF2 BeF2 is a model for this silicate system. The only compound present was the monoclinic form of ThSiO4 (huttonite), which melted incongruently to Tho2 and liquid at 1975° f 50° C. as determined from a series of powder X-ray spectrometer patterns. The eutectic temperature as tentatively determined is 1700°± 10°C. at a composition of greater than 95% by weight of Sio2. No solid-solution areas were observed. The quenching samples were fired in a modified oxygen-acetylene furnace which was developed to insure accurate temperature readings and to retain the effects of heating the samples in air.  相似文献   

8.
The C3A compacts were hydrated and the reaction was studied by DTA, X-ray diffraction, mercury porosimetry, and volume change analysis. The hexagonal hydroaluminates C2AH8 and C4AH19 formed at 2°, 12°, and 23°C by a direct mechanism between C3A and H2O. The hydration reaction at 52° and 80°C was stopped by formation of C3AH6 around the C3A grains. The rate of conversion of the hexagonal hydrates to cubic C3AH6 increased with temperature. Volume change analysis confirmed that C3AH6 grows epitaxially on the surface of the C3A grain. The reaction at this surface and the passage of water through the layer of hexagonal hydroaluminates control the overall reaction rate. The conversion of the hexagonal hydrates to C3AH6 accelerates the reaction by removing the layer of products from around the C3A grain by a solution mechanism. At 52° and 80°C, C3AH6 may form without the intermediate formation of the hexagonal hydrate.  相似文献   

9.
A mixture of CaO and silicic acid prepared with a Ca/Si ratio of 2.0 was hydrothermally synthesized at 80° to 200°C, and the thermal decomposition behavior of the products (C-S-H with Ca(OH)2) was analyzed using XRD, 29Si MAS NMR, and the trimethylsililation method (TMS). It was found that the main silicate anion structure of C-S-H was a mixture of a dimer and a single-chain polymer (larger than Si5O16) and that polymerization advanced with an increase of the synthesizing temperature. On heating, the products decomposed to form β-C2S. It was found that the decomposition was gradual and that the-higher the temperature of hydrothermal synthesis, the lower was the temperature of the decomposition into β-C2S. Although the decomposition proceeded to form a monomer (β-C2S) from the polymer and dimer, this dimer was resistant to heat and did not decompose unless heated to above 400°C.  相似文献   

10.
An all-alkoxide route to films and nano-phase powders of the La0.5Sr0.5CoO3 perovskite is described. To our knowledge, this is the first purely alkoxide-based route to (La1− x Sr x )CoO3, and it yields phase-pure and elementally homogeneous perovskite at 700°C by heating at 2°C/min. At 700°C, a cubic unit cell was obtained with a c=3.853Å, and after further heating to 1000°C, a rhombohedral cell could be indexed: a r=5.417 Å, αr=59.94°. Ninety to 130 nm thick films of La0.5Sr0.5CoO3 were obtained by spin coating. The gel-to-oxide conversion was studied in some detail, using thermo-gravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, IR spectroscopy, and transmission electron microscope equipped with an energy-dispersive X-ray spectrometer.  相似文献   

11.
Chemical diffusion coefficients for Si were measured in potassium silicate compositions containing from 64 to 85 wt% SiO2; unidirectional diffusion couples were heated for 0.1 to 720 h at 600° to 1400°C. The diffusion coefficients, which were calculated by the Boltzmann-Matano method, are described for a silicate containing 70 wt% SiO2 by:
The diffusion coefficients decreased with increasing O2 pressure. Below 800°C, the coefficients decreased with increasing SiO2 concentration; above 800°C, their dependence on SiO2 concentration was too weak to detect by the methods used. On the basis of a simple structural model for the glass, it was possible, from a phenomenological analysis of the diffusion, to establish a relation between the oxygen self-diffusion coefficient and the chemical diffusion coefficient for a given composition.  相似文献   

12.
The effect of curing temperature (40°, 60°, 80°C) on the hydration behavior of β-dicalcium silicate (β-C2S) was investigated. The β-C2S was obtained by decomposition of hillebrandite, Ca2(SiO3)(OH)2, at 600°C, has a specific surface area of about 7 m2/g, and is in the form of fibrous crystals. The dependence of the hydration reaction on temperature continues until the reaction is completed. The hydration is completed in 1 day at 80°C and in 14 days at 14°C. The hydration mechanism is different above and below 60°C, but at a given temperature, the reaction mechanism and the silicate anion structures of C-S-H do not change significantly from the initial to the late stages of the reaction. High curing temperature and long curing times after completion of reaction promote silicate polymerization. The Ca/Si ratio of C-S-H shows high values, being almost 2.0 above 60°C and 1.95 below 40°C.  相似文献   

13.
Additional information on phase equilibria in the subsolidus region of the system LiF-BeF2 was obtained and a study was made of the system PbF2–BeF2. In the system LiF-BeF2 the compound LiBeF3 occurs; it decomposes below the solidus at 300° C. to yield Li2BeF4 and the quartz form of BeF2. An additional subsolidus compound having the probable composition LiBe2F5 forms below 275°C. No evidence was found for the existence of the alleged compound LiBe2F5. In the system PbF2-BeF2 two compounds occur: 3PbF2.BeF2 and PbF2-BeF2; the former melts congruently at 482°± 5°C. and the latter at 585°± 5°C. Extensive solid solution exists between PbF2.BeF2 and BeF2. The cristobalite form of BeF2 crystallizes from glasses of high BeF2 content at temperatures of 450°C. or lower but is converted to the quartz form by heating at higher temperatures or in the presence of liquid.  相似文献   

14.
A metastable modification of Y2TeO6 crystallizes at 770°C to 870°C at a heating rate of 10°C·min−1 in air from an amorphous material prepared by the simultaneous hydrolysis of yttrium and tellurium alkoxides. It has a tetragonal unit cell with a=1.0428 nm and c=1.7524 nm. The tetragonal-to-hexagonal phase transformation occurs at 920° to 960°C. Hexagonal Y2TeO6 decomposes into Y6TeO12 and TeO3↑ at 1220° to 1320°C; only Y6TeO12 is obtained as the decomposition product. Both modifications of Y2TeO6 are built up by octahedral TeO6 groups.  相似文献   

15.
The quenching technique was used to study subliquidus and subsolidus phase relations in the pseudobinary system Na2 Ti2Si2 O11-Na2 Ti2 Si2 O9. Both narsarukite (Na2TiSi4O11) and lorenzenite (Na2Ti2Si2O9) melt incongruently. Narsarsukite melts at 911°±°C to SiO2+liquid, with the liquidus at 1016°C. Lorenzenite melts at 910°±5°C to Na2 Ti6 O13+liquid; Na2 Ti6 O13 reacts with liquid to form TiO2 and is thus consumed by 985°±5°C. The liquidus occurs at 1252°C.  相似文献   

16.
BaTi4O9 and Ba2Ti9O20 precursors were prepared via a sol–gel method, using ethylenediaminetetraacetic acid as a chelating agent. The sol–gel precursors were heated at 700°–1200°C in air, and X-ray diffractometry (XRD) was used to determine the phase transformations as a function of temperature. Single-phase BaTi4O9 could not be obtained, even after heating the precursors at 1200°C for 2 h, whereas single-phase Ba2Ti9O20 (as determined via XRD) was obtained at 1200°C for 2 h. Details of the synthesis and characterization of the resultant products have been given.  相似文献   

17.
This paper clarifies the formation reaction of ZrO2 crystals which appear as extrinsic scatterers in fluoride fibers. EPMA analysis indicates that BaO exists at grain boundaries of BaF2 purified by sublimation. BaO reacts with ZrF4 to form ZrO2 at 600°C during a glass-melting process. The ZrO2 formation reaction is influenced by H2O. Ba(OH)2, which is formed by the reaction between BaO and water vapor, melts at 370° to 420°C and reacts with ZrF4 to form ZrO2 at 450° to 520°C. When low-oxide-content BaF2 is used for fiber preparation, scatterers significantly decrease.  相似文献   

18.
An examination was conducted to determine the mechanism of peeling of fire-clay brick in the low-temperature region of a blast furnace where 3 to 10% K2O is the principal contaminant. In laboratory tests, as-received high-duty and superduty fire-clay brick and 70% alumina brick treated with KCl-K2CO3 mixtures showed no peeling at a temperature of 1600°F. Cracks were found in high-duty brick that were treated with KCN at 1500°F. under partially reducing conditions. X-ray diffraction studies of mixtures of crushed brick and K2CO3 indicated the formation of leucite (K2O.Al2O3.4SiO2) and kaliophilite (K2O.-Al2O3.2SiO2) at temperatures below 1700°F. These latter data, confirmed by specimens from used blast-furnace linings, showed that silica is the first constituent attacked by alkali. Since the formation of leucite and kaliophilite in fire-clay brick is the probable cause of peeling, the increased reaction of silica, in a dense Al2O3.SiO2 refractory of higher silica content than fire-clay brick, should confine the alkali attack to the surface of the brick in low-temperature applications.  相似文献   

19.
The high-temperature stability and behavior of MoSi2 was studied by heating dense sintered specimens under a vacuum of 10−5 mm Hg in the temperature range 1700° to 2000°C. The resulting material was examined using physical measurements, X-ray analysis, and metallographic techniques. The decomposition of MoSi2 into Mo5Si3 is described. The Mo5Si3-MoSi2 eutectic temperature was determined as 1900° C, and the melting points of MoSi5 and Mo5Si3 were determined as 1980° and 2085° C, respectively.  相似文献   

20.
The effects of sliding speed and dissolved oxygen on the tribological behavior of Si3N4 sliding on itself in water were investigated at room temperature and at 120°C saturated vapor pressure. The friction coefficients and specific wear rates at 120°C were much larger than those at room temperature and had a minimum at about 0.4 m/s, whereats -the specific wear rate of the disk increased with increasing the sliding speed. The wear rate at lower sliding speeds in water at 120°C is considered to be primarily controlled by the increase of the contact stress on the asperities which are formed by the dissolution of grain boundaries of the Si3N4 ceramic and the subsequent dissolution of the silica layer of the reaction product However, the wear rate at higher sliding speeds is governed by the direct oxidation and microfracture of the Si3N4 substrate. The tribochemical reaction to produce NH3 mainly occurred at all sliding conditions in water at room temperature and 120°C, and the reaction to produce H2 gas appeared slightly only at the sliding speeds above 0.4 m/s at 120°C. The tribological behavior was independent of dissolved oxygen concentration for all sliding conditions in water at room temperature and 120°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号