首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
海量的微博信息使新进用户很难获取到其感兴趣的内容,重要微博用户推荐为新用户提供了一条有效获取信息的途径。目前,由于 用户间的关系没有被充分考虑及缺乏对用户个性化标签的处理,导致重要微博用户推荐的准确率不高。为此,提出了一种基于标签和PageRank的重要微博用户推荐算法。该算法首先对个性化标签进行分词、去噪、设置权重等处理,并将其作为用户兴趣的代表;然后根据PageRank计算模型来分析用户间的关系,结合标签相似度计算向新用户推荐与其兴趣相似的重要微博用户。 实验表明,该算法由于融入了对微博用户关系和用户个性化标签的重要性分析,因此与基于标签和协同过滤的个性化推荐算法相比 具有更高的重要微博用户推荐准确率。  相似文献   

2.
社会化标签系统允许用户使用个性化的词汇对网络中的资源进行标注而被用户广泛接受。在微博网络中,用户可以为自己加注标签以推广自己或者方便别人找到自己。深入分析了微博用户数据,总结了微博用户标签的特点,针对LDA(latent Dirichlet allocation)主题模型在处理短文本时存在的不足,提出了一种基于好友关系约束主题模型。在此基础上对微博用户标签进行主题分析,计算用户的主题分布,对标签词进行聚类,并最终为用户推荐标签。通过对比实验证明了该方法可以提高标签推荐的准确度。  相似文献   

3.
为了解决推荐算法中用户标签稀疏、推荐准确度不高的问题,提出了一种基于用户标签的微博推荐算法。利用TextRank排序方法提取用户发布微博中的关键词,并对该关键词进行扩展,将其作为表示用户兴趣的标签;再根据微博的效应函数和生命周期形成待推荐的微博列表,计算用户标签及其同义词在待推荐微博列表 中出现的次数,将出现次数较多的TOP-k条微博推荐给用户。通过实验验证,该算法能够有效地解决用户标签的稀疏性问题,并能提高推荐算法的准确性。  相似文献   

4.
基于网络结构的推荐算法利用用户与项目间的结构关系进行推荐,忽略了用户偏好,而项目的标签隐含了项目的内容及用户的偏好,提出一种基于网络结构和标签的混合推荐方法。算法根据用户选择项目的标签统计信息,分别采用TF-IDF和用户对标签的支持度两种方法构建用户偏好模型,与基于网络的推荐模型进行线性组合推荐。通过在基准数据集MovieLens上测试证明,该算法在推荐结果命中率、个性化程度、多样性等方面均优于基于网络的推荐算法。  相似文献   

5.
随着Web的推广和普及,产生了越来越多的网络数据。 广泛应用了 标签系统 ,以便人们使用搜索技术来组织和使用这些信息。这些数据允许用户使用关键字(标签)注释资源,为传统的基于文本的信息检索提供了方案。为了支持用户选择正确的关键字,标签推荐算法应运而生。提出了一种个性化标签推荐方法,该方法综合了用户的资源标签与标签概率模型。该模型利用了简单语言模型和隐含狄利克雷分配模型,并针对现实世界的大型数据集进行了大量实验。实验表明,该个性化方法改进了标签推荐算法,推荐结果优于传统方法。  相似文献   

6.
《计算机工程》2017,(4):177-182
通过基于概率的主题挖掘模型隐含狄利克雷分布(LDA)挖掘用户兴趣主题,是目前最常用的用户兴趣主题挖掘方法。为进一步改善用户体验,推荐其感兴趣且质量好、新鲜度高的微博,提出一种新的多角度个性化微博推荐算法。通过微博发布时间、转发数、评论数等特征计算微博重要度,利用LDA模型生成的用户-主题矩阵以及主题-词汇矩阵计算用户对微博的兴趣度,综合考虑微博本身的重要度以及用户对微博的兴趣度对微博进行评分,根据评分结果推荐微博。实验结果表明,该算法与主题模型相结合可有效够提高微博推荐的精准度。  相似文献   

7.
随着互联网的发展,微博已成为人们获取信息的主要平台,为从海量微博中挖掘出有价值的主题信息,结合微博中的会话、转发和话题标签,将微博划分为用户兴趣、用户互动和话题微博3类,提出基于作者主题模型( ATM)的话题标签主题模型HC-ATM,使用Gibbs抽样法对模型进行推导,获取微博主题结构。在Twitter数据集上的实验结果表明,与ATM模型和基于潜在狄利克雷分布的微博生成模型相比, HC-ATM模型的主题困惑度更小、差异度更大,并且能有效挖掘出不同微博类型的主题分布。  相似文献   

8.
为进一步提高个性化标签推荐性能,针对标签数据的稀疏性以及传统方法忽略隐藏在用户和项目上下文中潜在标签的缺陷,提出一种基于潜在标签挖掘和细粒度偏好的个性化标签推荐方法。首先,提出利用用户和项目的上下文信息从大量未观测标签中挖掘用户可能感兴趣的少量潜在标签,将标签重新划分为正类标签、潜在标签和负类标签三类,进而构建〈用户,项目〉对标签的细粒度偏好关系,在缓解标签稀疏性的同时,提高对标签偏好关系的表达能力;然后,基于贝叶斯个性化排序优化框架对细粒度偏好关系进行建模,并结合成对交互张量分解对偏好值进行预测,构建细粒度的个性化标签推荐模型并提出优化算法。对比实验表明,提出的方法在保证较快收敛速度的前提下,有效地提高了个性化标签的推荐准确性。  相似文献   

9.
传统基于标签的推荐算法仅考虑用户的评分信息,导致推荐准确度不高。为解决该问题,提出一种改进的协同过滤推荐算法。对用户-标签矩阵、资源-标签矩阵进行潜在Dirichlet分布建模,发掘推荐系统中的潜在语义主题,从语义层面计算用户对各资源的偏好概率,将计算出的偏好概率与协同过滤算法计算出的资源相似度相结合,预测用户偏好值,实现个性化推荐。在Movielens数据集上的实验结果表明,与传统基于标签的推荐算法相比,该算法能消除标签中存在的同义词、多义词等语义模糊问题,同时提高推荐准确度。  相似文献   

10.
首先对国内微博平台的信息进行了综合分析,主要介绍了微博信息的定义,在错综复杂的微博信息中哪些信息比较重要,以及这些微博信息包含哪些详细的内容,是如何组织的。然后选取新浪微博平台作为研究对象,利用新浪微博API设计了爬虫程序,抽取用户信息;以用户的关注人数、粉丝数和发布的微博数为标准对用户信息进行了定量分析。最后根据分析结果,针对不同特征的用户群体提出了相应的标签推荐方法。  相似文献   

11.
传统的协同过滤算法虽然可以很容易地挖掘出用户的兴趣爱好,但存在数据冷启动和稀疏性问题.针对这些问题,提出一种基于用户兴趣模型的推荐算法.首先通过LDA主题模型训练数据集得到物品-主题概率分布矩阵,利用物品-主题概率分布矩阵得到用户历史兴趣模型,然后结合用户历史行为信息和物品内容信息得到用户兴趣模型,最后计算用户与候选集之间的相似度,进行TOP-N推荐.在豆瓣电影数据集上的实验结果表明,改进后的推荐算法能够更好地处理稀疏数据和冷启动问题,并且明显提高了推荐质量.  相似文献   

12.
为了准确地为微博用户推荐相近兴趣领域的重要用户,有效提高用户对微博平台的依赖度。该文对传统的HITS算法进行了改进: 通过分析微博用户社交网络结构,运用改进算法将微博用户划分为3类,在微博主题相似度计算中引入用户的权威度和中心度,最后根据用户类别进行微博用户推荐。实验中,使用爬取的微博数据对传统的推荐算法和该文的改进算法进行对比实验,由于所提算法在分析过程中考虑了用户结构信息、用户的权威度与中心度等多种因素,因而在准确率、召回率、F1值上均有明显提高。  相似文献   

13.
用二分图来实现个性化推荐的算法越来越受到研究者的注意。文中提出混合用户模型下的二分图推荐算法(MNBI),针对二分图推荐算法中存在的用户多、项目少时命中效率低的情况用混合用户模型进行改进,同时对于推荐中加权的二分图边的权值用用户集的总体的加权和进行改进。该算法基本思想就是在用户很多的情况下,用混合用户模型对用户首先进行一个预处理生成一定数量的用户集,然后用用户集和项目构成用户集-项目的二分图。通过在Movielens数据集中进行测试的实验结果表明,相比NBI算法,MNBI算法推荐的命中效率有一定的提高,同时对于推荐多样性有所提高,并且在数据冷启动情况下效果较好。  相似文献   

14.
基于动态主题模型融合多维数据的微博社区发现算法   总被引:1,自引:0,他引:1  
随着微博用户的不断增加,微博网络已经成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM算法.DC-DTM算法首先将微博网络映射为有向加权网络,网络中边的方向反映结点之间的关注关系,利用提出的DTM模型计算出结点之间的语义相似度,并将其作为节点间连边的权重.DTM模型是一种微博主题模型,该模型不仅能够挖掘博客的主题分布,而且能计算出某一主题中用户的影响力大小.其次,利用提出的复杂度低的标签传播算法WLPA进行微博网络的社区发现.该算法的初始化阶段将影响力大的用户结点作为初始结点,标签按照结点的影响力从大到小进行传播,克服了传统标签传播算法的逆流现象,提高了标签传播算法的稳定性.在真实数据上的实验表明,DTM模型能很好地对微博进行主题挖掘,DC-DTM算法能够有效地挖掘出微博网络的社区.  相似文献   

15.
张瑞  金志刚  王颖 《计算机科学》2016,43(4):192-196, 230
针对已有的标签推荐模型在实际微博场景运用中存在的多样性、相关性较差等不足,提出了一种基于混合粒度的标签推荐模型。将微博用户的可分析资源分解成由用户信息、标签和微博正文组成的混合粒度,在不同粒度上分别进行个人信息过滤及个性标签分析,从而计算用户标签的熵值与内联度和分类标注标签词汇,提取微博正文主题等,最终为用户推荐具有较强关联性的个性化标签。与一般LDA模型的对比实验证明,该模型可以有效解决新用户的冷启动、标签推荐的准确度等问题,同时保证了推荐的多样性。  相似文献   

16.
邢千里  刘列  刘奕群  张敏  马少平 《软件学报》2015,26(7):1626-1637
微博环境中用户可以为自己添加标签,用户所添加的标签往往被视为是对自身特点和兴趣的重要描述信息.标签中所包含的信息可能有助于建立精确的用户描述,因此在个性化推荐、专家检索、影响力分析等应用中有潜在的应用价值.首先,在大规模数据上分析和研究了微博中用户添加标签的行为及标签内容分布的特点;之后,通过主题模型对用户的微博内容进行分析,实验结果表明:用户的标签越相似,微博内容也越相似,反之亦然;随后,分析了用户关注关系与微博和标签内容之间的联系,实验结果显示,有关注关系的用户之间微博和标签的内容越相似;基于这个发现,分别使用标签内容和微博内容对真实微博数据中的用户关注关系进行预测,结果表明:基于标签的预测方法其效果明显优于基于微博内容的预测方法,显示出用户标签在描述用户兴趣方面的价值.  相似文献   

17.
随着社交网迅速发展,产生了大量带有时空信息的短文本数据.这些短文本数据因其文本长度过短且所带地理位置信息过于稀疏导致用户行为主题难于捕捉.此外,由于目前大多数用户行为理解相关研究工作缺少对行为要素间依赖关系的适度融合,因而造成行为理解具有片面性.基于此,首先提出2种综合考虑用户行为发生时间、活动内容、活动区域的用户-时间-活动模型(user-time-activity model, UTAM)和用户-时间-区域模型(user-time-region model, UTRM),用于深刻理解用户行为规律;然后利用LDA(latent Dirichlet allocation)技术,抽取用户活动-服务主题,提出活动-服务主题模型(activity-to-service topic model, ASTM),用于挖掘活动和服务间的对应关系;最后将服务地点属性内耦合性纳入考虑,提出了基于耦合和距离的矩阵分解(matrix factorization based on couple & distance, MFCD)算法,用于提高推荐质量.为验证所提模型和算法的有效性,在真实Twitter数据集上进行了扩展性实验,结果表明:所提模型对提高个性化服务推荐质量是有效的,MFCD算法对于用户的行为理解效果也优于传统矩阵分解算法.  相似文献   

18.
针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。  相似文献   

19.
面向基于情境感知的推荐问题,提出一种基于用户情境聚类的个性化推荐算法。该算法利用情境预过滤的思想,首先运用模糊聚类的方法对历史数据集中用户的情境进行聚类,构造与当前用户情境相似度较高的用户集合,再与传统的基于用户的协同过滤算法相结合进行个性化推荐。实验采用公开数据集,结果表明该算法在多维情境信息条件下可用,并且推荐准确度要高于传统协同过滤算法,在聚类粒度不同的情况下对推荐结果也会产生不同的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号