首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Silver nanoparticles were evenly deposited in the pores of freestanding porous anodic aluminum oxide (AAO) templates via a chemical route. In the precursor, Ag+ ions were complexed with ammonia and reduced to Ag by adding an excess amount of acetaldehyde. After tens of minutes of plating at 50 °C, well-crystallized Ag nanoparticles were uniformly deposited on the pore walls of the porous AAO templates. Field emission scanning electron microscopy was used to estimate the size and distribution of the Ag nanoparticles. X-ray diffraction and HRTEM confirmed that the nanoparticles consisted of metallic silver.  相似文献   

2.
In this paper, we describe the synthesis of silver nanocrystals within aqueous foams as a template. More specifically, we show that aqueous Ag+ions may be electrostatically complexed with the anionic surfactants aerosol OT (sodiumbis-2-ethylhexyl-sulfosuccinate, (AOT) and sodium dodecyl sulphate (SDS)) in a highly stable liquid foam. After drainage of the foam, the silver ions are reducedin situby introducing sodium borohydride into the foam by capillary flow. This leads to the formation of silver nanoparticles of spherical, tape-and sheet-like morphology in the foam. The structure of the foam is extremely complex and presents reaction sites of different spatial extent. The differences in foam reaction-site geometry are believed to be responsible for the morphology variation in the silver nanoparticles observed. The silver nanoparticles are observed to be extremely stable in solution suggesting that the AOT or SDS molecules stabilize them. This approach appears promising for application in large-scale synthesis of nanoparticles and may be readily extended to other chemical compositions.  相似文献   

3.
Ko W  Yim C  Jung N  Joo J  Jeon S  Seo H  Lee SS  Park JC 《Nanotechnology》2011,22(40):405502
We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e. AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.  相似文献   

4.
The design, synthesis and characterization of biologically synthesized nanomaterials have become an area of significant interest. In this paper, we report the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobized silver nanoparticles with hydrophobized chloroaurate ions. On treating aqueous silver sulfate and chloroauric acid solutions with Emblica Officinalis fruit extract, rapid reduction of the silver and chloroaurate ions is observed leading to the formation of highly stable silver and gold nanoparticles in solution. Transmission Electron Microscopy analysis of the silver and gold nanoparticles indicated that they ranged in size from 10 to 20 nm and 15 to 25 nm respectively. Ag and Au nanoparticles thus synthesized were then phase transferred into an organic solution using a cationic surfactant octadecylamine. Transmetallation reaction between hydrophobized silver nanoparticles and hydrophobized chloroaurate ions in chloroform resulted in the formation of gold nanoparticles.  相似文献   

5.
Inspired by organic matrices in some life systems which can operate as templates for biosynthesis organic materials with uniform size and morphology, in our experiment, chitosan was combined with AG4 peptide (NPSSLFRYLPSD) to form a simple organic matrix, which was used as a template to synthesize particle size and morphology-controlling silver nanoparticles. The results of UV–vis determination and TEM observation indicated that uniform spherical silver nanoparticles with about 5 nm in size were obtained at the certain concentration of chitosan and silver ions. Hence, it is possible to control the size and morphology of silver nanoparticles at a certain extent by adjusting the concentration of chitosan and silver ions. In addition, triangle and hexagonal silver nanoparticles ranging from 20 nm to 60 nm in size appeared in different conditions. The advantage of this biomimetic synthesis of silver nanoparticles is that the process could be accomplished under mild conditions rather than stringent conditions, such as high temperature, very high pressures and a toxic environment, which usually occurs with the traditional methods for preparing metal nanoparticles.  相似文献   

6.
A method for directional deposition of silver nanoparticles on montmorillonite platelets was developed. In order to utilize the elemental layer sheets of montmorillonite as substrate for chemical plating, the clay was modified with dodecyl benzyl dimethyl ammonium chloride, and then exfoliated in toluene with the aid of ultrasonic. Silver deposition in dimethyl formamide with PVP as stabilizer was nucleated at the montmorillonite surface and in the solution. Directional deposition was successful through sensitization with stannous isooctoate and reduction of silver nitrate with Tin(II) ions.  相似文献   

7.
This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.  相似文献   

8.
There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 °C, led to the formation of silver nanoparticles in the range of 40–80 nm in dimensions. The silver nanoparticles were formed readily within 10–15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV–vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.  相似文献   

9.
The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH2) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles.  相似文献   

10.
Silver metalized methacrylate films are prepared by single-step UV curing process with good conductivity on both sides. The major component of the composite is Bisphenol A ethoxylate dimethacrylate, which can be photopolymerized by a photoreactive initiator under UV light. Under the same conditions of UV irradiation, silver ions are deposited as metal nanoparticles while the pyrrole is oxidized to polypyrrole. The migration of silver ions and pyrrole toward both surfaces during polymerization leads to the formation of a metallo-polymer capacitor. The composite films are characterized by SEM-EDX and electrical measurements for possible applications as capacitors in flexible and/or nonplanar electronics.  相似文献   

11.
In this work we present a route to prepare intrinsically conducting polymer (ICPs)/Silver nanoparticles composite through the photon polymerization process. The method consists to use the transition metals ions assisted by UV light to polymerize the pyrrole monomer. At the same time that the monomer is polymerized the silver ions are reduced and the silver metal particle are produced and incorporated to the polymer matrix. The composite films were characterized by conductivity measurements, UV/vis and FTIR spectroscopy, X-ray diffraction, and scanning electronic microscopy. The morphological properties of incorporated silver nanoparticles were examined with respect to the nature of substrates, exposure time and monomer ratios. Soon after a silver nitrate solution containing Pyrrol is excited by an UV light, a black deposition appears on glass walls or other substrates, such PET (poly(ethylene terephthalate) immersed in the solution, however if the solution is set aside and protected from light, the same black films takes more than 48 h to form. The UV–visible absorption, X-ray diffraction, infrared analysis and conductivity measurements confirm the formation of silver particles and pyrrole polymerization with composite conductivity in the order of 10−3 S cm−1.  相似文献   

12.
DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20–35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.  相似文献   

13.
Recycling of lead-contaminated EDTA wastewater.   总被引:3,自引:0,他引:3  
Ethylene diaminetetraacetic acid (EDTA) is one of the chelating agents used in the soil washing process for the decontamination of lead-contaminated soil. Lead-EDTA complexes in the wastewater from the soil washing process must be removed before the wastewater can be safely discharged. This study outlines a method to recycle Pb-EDTA wastewater by substituting the Pb complexed with EDTA with Fe(III) ions at low pH, followed by precipitation of Pb ions with phosphate or sulfate ions. Fe(III) ions complexed with EDTA were then precipitated at high pH using sodium hydroxide. The resulting solution (Fe-precipitated solution) was tested on three lead-contaminated soils. The Fe-precipitated EDTA solution was found to have similar extraction capabilities as fresh EDTA solution. Experimental results showed that the recycled EDTA solution may be recycled several times without losing its extractive power. Recycled EDTA wastewater with phosphate precipitation was found to be slightly more effective than recycled EDTA solution using sulfate precipitation. The recycling procedure may be applied to wastewater generated during soil washing of lead-contaminated soil, resulting in a reduction in wastewater generated and savings in the amount of EDTA used.  相似文献   

14.
This paper reports a study on the preparation of gold nanoparticles and silver dendrites on silicon substrates by immersion plating. Firstly, gold was deposited onto silicon wafer from HF aqueous solution containing HAuCl4. Then, the silicon wafer deposited gold was dipped into HF aqueous solution of AgNO3 to form silver coating gold film. Scanning electron microscopy reveals a uniform gold film consisted of gold nanoparticles and rough silver coating gold film containing uniform dendritic structures on silicon surface. By SERS (surface-enhanced Raman scattering) measurements, the fabricated gold and silver coating gold substrates activity toward SERS is assessed. The SERS spectra of crystal violet on the fabricated substrates reflect the different SERS activities on gold nanoparticles film and silver coating gold dendrites film. Compared with pure gold film on silicon, the film of silver coating gold dendrites film significantly increased the SERS intensity. As the fabrication process is very simple, cost-effective and reproducible, and the fabricated silver coating gold substrate is of excellent enhancement ability, spatial uniformity and good stability.  相似文献   

15.
ABSTRACT

Silver nanoparticles synthesised using aqueous extract of Cocos nucifera (CN) mesocarp were evaluated for their photocatalytic activity under solar irradiation. The silver nanoparticles were synthesised by a green method of harnessing bioactive phytocomponents from the mesocarp of Cocos nucifera. Large-scale application of this process necessitates the manoeuvering of the process parameters for increasing the conversion of silver ions to nanoparticles. Process parameters influencing the morphological characteristics of silver nanoparticles such as precursor salt concentration and pH of the synthesis mixture were studied. The crystalline nanoparticles were characterised using UV-vis spectroscopy, XRD, FTIR, SEM and EDX analysis. CN extract and 5 mM silver nitrate solution at a ratio of 1:4 (v/v) in the synthesis mixture was found to be the optimum. Alkaline initial pH of the synthesis mixture was found to favour the synthesis of smaller sized monodispersed silver nanoparticles. Solar energy was harnessed for the photocatalytic degradation of Malachite green dye using silver nanoparticles obtained through the green synthesis method. Overall process aims at utilisation of naturally available resource for the synthesis of silver nanoparticles as well as the degradation of dyes using these nanoparticles, making it useful in the treatment of wastewater.  相似文献   

16.
The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.  相似文献   

17.
Enhanced Raman scattering from metal surfaces has been investigated for over 30 years. Silver surfaces are known to produce a large effect, and this can be maximized by producing a roughened surface, which can be achieved by the aggregation of silver nanoparticles. However, an approach to control this aggregation, in particular through the interaction of biological molecules such as DNA, has not been reported. Here we show the selective turning on of the surface enhanced resonance Raman scattering effect on dye-coded, DNA-functionalized, silver nanoparticles through a target-dependent, sequence-specific DNA hybridization assembly that exploits the electromagnetic enhancement mechanism for the scattering. Dye-coded nanoparticles that do not undergo hybridization experience no enhancement and hence do not give surface enhanced resonance Raman scattering. This is due to the massive difference in enhancement from nanoparticle assemblies compared with individual nanoparticles. The electromagnetic enhancement is the dominant effect and, coupled with an understanding of the surface chemistry, allows surface enhanced resonance Raman scattering nanosensors to be designed based on a natural biological recognition process.  相似文献   

18.
Nanodissection of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) has been investigated by atomic force microscopy (AFM). It is found that both ss- and dsDNA can be repeatedly dissected by an AFM tip. However, a comparison study indicates that ssDNA is a little bit more easily broken by the AFM tip than dsDNA. This is supported by the fact that the time requested to break ssDNA is shorter than that of dsDNA in the same dissection procedure under the same load. Our experiment also shows that dissection of the DNA strand is very sensitive to the load applied, and a small change of the load lead to different results.  相似文献   

19.
Liu X  Kakkar A 《Nanotechnology》2008,19(24):245602
We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles.  相似文献   

20.
Seo H  Joo J  Ko W  Jung N  Jeon S 《Nanotechnology》2010,21(50):505502
A novel microgravimetric immunosensor has been developed using TiO(2) nanoparticle-modified immunoassay and silver enhancement reaction. An antibody-conjugated TiO(2) nanoparticle is bound to the AFP antigen immobilized on a quartz resonator. When the nanoparticles are exposed to UV light in a silver nitrate solution, the photocatalytic reduction of silver ions results in the formation of metallic silver onto the nanoparticles and induces a decrease in the resonance frequency. The frequency change by this photocatalytic reduction reaction is three orders of magnitude larger than the change by antigen binding alone. The efficiency of the photocatalytic reaction has been found to increase with the fraction of anatase crystallites in the nanoparticles and the concentration of the AgNO(3) solution. The results highlight the potential of the photocatalytic nanoparticles for the detection of low concentrations of target molecules using gravimetric sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号