首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
《钢结构》2012,(6):83-84
对由厚度为6.0mm、名义屈服强度为315.0MPa的钢板制成的H型钢进行了一系列弯曲试验,研究焊接H型钢的抗弯强度。截面几何形状和侧向边界条件决定了薄壁受弯构件的屈曲形式(局部屈曲、侧向扭转屈曲或交互屈曲)。翼缘或腹板宽厚比较大的受弯构件最先出现局部屈曲,继而发生侧向扭转屈曲,在交互屈曲作用下材料最终破坏。侧向扭转屈曲下局部屈曲对抗弯强度有负面影响。计算薄壁抗弯构件名义屈服应力时应将该现象考虑在内。对翼缘和腹板宽厚比不同的焊接H型钢梁进行了试验。进行有限元分析时将局部和侧向扭转屈曲模态的初始缺陷及残余应力考虑在内。基于考虑焊接型材局部和侧向扭转屈曲相互作用的试验和有限元分析结果,给出直接强度法(DSM)计算抗弯强度的简化公式。计算强度曲线与AISC规范(2005),EC3(2003)及试验结果进行比较,验证了DSM方法所计算的强度曲线的准确性。通过试验得出薄壁焊接H型钢的抗弯强度和结构性能的有关结论。  相似文献   

2.
This paper describes the flexural strength of welded sections based on a series of flexural tests performed on H-sections fabricated from steel plates of thickness 6.0 mm with nominal yield stress of 315.0 MPa. Thin-walled flexural members undergo local, lateral-torsional or their interactive buckling according to the section geometries and lateral boundary conditions. Flexural members with the flanges or the web of large width-to-thickness ratios may undergo local buckling before lateral-torsional buckling and their interaction before the final collapse of the section. The local buckling has a negative effect on the flexural strength based on the lateral-torsional buckling. This phenomenon should be considered in the estimation of the nominal flexural strength of thin-walled flexural members. Welded H-section beams composed of the flanges and the web with various width-to-thickness ratios were tested to failure. The initial imperfections in local and lateral buckling mode, and residual stresses were included in the FE analyses. Simple design flexural strength formulas for the direct strength method (DSM) were proposed based on the test and FE results of welded sections to account for interaction between local and lateral-torsional buckling. The design strength curves were compared with the AISC specifications (2005), Eurocode3 (2003) and test results. The adequacy of the strength curve for the DSM was confirmed. A set of conclusions on the flexural strength and structural behavior of thin-walled welded H-sections was drawn from the experimental studies.  相似文献   

3.
In the bridge structures, stiffened plates are usually designed as rigidly stiffened when the orthotropic steel box girder is used as the main load-bearing structure. Therefore, the buckling mode of stiffened plates is plate buckling which occurs in subpanel supported by stiffeners. The orthotropic steel box girder is used as the main girder for Egongyan Rail Special Bridge, which is a self-anchored suspension bridge. Plates of the steel girder are rigidly stiffened with unequal spacing open ribs, and the most slender stiffened plate is the mid web stiffened with Tee ribs. In order to ensure the safety of the bridge, the buckling behavior of the web and orthotropic steel box girder under axial compression, including ultimate strength, post-buckling behavior and failure modes, should be clearly investigated by experimental and numerical methods. The design, loading and testing methods of the 1:4 scale model of the orthotropic steel box girder are introduced in detail firstly. The orthotropic steel box girder and the stiffened web finite element (FE) models are validated by the test results, and the effects of residual stress and the magnitude of geometric imperfections are discussed roughly. Based on the validated web FE model, a detailed parametric study is performed to systematically investigate the effects of residual stress and geometric imperfections on buckling behavior of the web. The effect of shapes of geometric imperfections discussed is highlighted. Through tracing stress states, the failure modes of stiffened plate are in agreement with the experimental phenomenon to some extent. Results show that shapes of geometric imperfections have significantly influenced post-buckling behavior and failure modes of the web, but slightly affected the ultimate strength. It is advised that residual stress and geometric imperfections should be controlled to make full use of excellent performance of steel materials.  相似文献   

4.
I-shaped steel girders with tubular flanges have been studied for application in highway bridges because of their large torsional stiffness compared to conventional I-shaped steel plate girders (I-girders). For straight girder bridges, the large torsional stiffness of a tubular flange girder (TFG) results in significantly greater lateral–torsional buckling strength compared to a corresponding I-girder. For horizontally curved girder bridges, the large torsional stiffness of a TFG results in much less normal stress, vertical displacement and cross-sectional rotation compared to a corresponding I-girder. The paper presents experimental and finite element analysis results for straight and horizontally curved TFG bridges. The results show the advantages of TFGs in comparison to conventional I-girders. A TFG demonstration bridge constructed in the USA is described.  相似文献   

5.
Abstract

The behaviour of horizontally curved bridge girders with a tubular top flange and a flat plate bottom flange (i.e., a TFG1) was investigated experimentally and analytically. The investigation focused on the behaviour of a curved TFG1 bridge under loading conditions simulating construction of the concrete deck. The objectives include (1) to generate experimental data for the response of a curved TFG1 bridge system under vertical loading up to and beyond the load capacity; (2) to assess the adequacy of finite element (FE) models to predict this response by comparing experimental data and FE analysis results and (3) to use the experimental data and FE results to validate criteria used to design a curved TFG1 bridge. The experimental data demonstrate that the curved TFG1 bridge system satisfies the design criteria, and has a significant safety margin for the anticipated loads. The comparisons between the experimental data and the FE results show that the FE models have sufficient accuracy to predict the detailed response of curved TFG1 bridge systems. Abbreviation List IG I-girder

TFG I-shaped girder with tubular flanges

TFG2 I-shaped girder with a tubular top flange and a tubular bottom flange

TFG1 I-shaped girder with a tubular top flange and a flat plate bottom flange

FE finite element

FTFG1 a full-size, curved TFG1 bridge with two TFG1 girders

  相似文献   

6.
Recently, after clearly pointing out the flaws associated with the current AISC equation for flexural strength of I-shaped beams with slender flange, the authors proposed new equation, more accurate and more consistent than the current AISC equation, based on the mixed variational approach. However, the new equation was derived under the condition of uniform moment loading. In this paper, elastic flange local buckling strength formula for I-shaped beams with slender flange under moment gradient was proposed as a follow-up study on the basis of mixed variational approach and supplemental numerical works. The flange plate buckling coefficient predicted by the formula of this study is again shown to be much more accurate and consistent.  相似文献   

7.
Lateral forces or torsion combined with major axis bending result in a stress gradient across the compression flanges of I-shaped flexural members. Sources that cause significant stress gradient include situations where unequal reactions come to opposite sides of a girder or beams that frame into one side of a girder, skewed bridge girder supports, wind loading on facia girders, curvature induced warping, etc. In this study, three sets of support conditions are considered for evaluating the elastic buckling capacity of flanges of I-shaped beams subjected to a stress gradient. This includes a Galerkin series solution that considers the full width of the flange plate with a variable rotational stiffness along the center of the plate. For a stress gradient leading to tension over part of the flange, equations for predicting the buckling capacity are developed using finite element analyses. Simplified equations are developed for I-shaped cross sections, and numerical examples are used to demonstrate the accuracy of the solution. A definition of the noncompact limit for flanges of I-shaped beams and girders subjected to stress gradient is presented.  相似文献   

8.
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.  相似文献   

9.
为研究不锈钢薄腹梁在弯矩和剪力共同作用下的承载性能,进行了6根焊接工字形截面不锈钢梁的试验研究.结果 表明,所有梁试件的破坏形态为结合了腹板剪切屈曲和受压区板件局部鼓曲的弯剪联合屈曲.建立精细有限元数值模型对试验过程进行模拟,同时考虑了不锈钢材料、几何双非线性,局部几何初始缺陷和焊接残余应力的影响.基于得出的试验和有限...  相似文献   

10.
Numerical investigations on the fatigue‐relevant bolt stresses in preloaded ring flange connections with imperfections. For the structural design of preloaded bolted ring flange connections in tower‐like steel structures (e.g. chimneys or wind turbine tubular towers), the fatigue assessment of the bolts is very important. Gaps between the contact surfaces before preloading (so‐called flange imperfections) may have a negative influence on the fatigue‐relevant bolt stresses. A FE‐model for imperfect ring flanges was built up and validated by means of the results of large‐scale tubular bending tests on flange connections. With the validated FE‐model, a parametric study on imperfectly simulated L‐flange connections having realistic dimensions of typical wind turbine towers was performed. The results enable differentiating the various gaping forms with regard to their negative influence on the bolt fatigue. This influence may not be neglected when assessing the fatigue safety of the bolts.  相似文献   

11.
The design of cylindrical metal silos and tanks is often controlled by considerations of buckling under axial compression. Whilst the effects of geometric imperfections on the buckling strength have been extensively explored, few studies have explored the effects of defects in the boundary conditions and the effects of residual stresses have received even less attention.This paper investigates the initiation and development of imperfections caused by local differential settlement at the supported base and their effect on the elastic buckling of a thin cylindrical shell under axial compression. The shells were treated as initially perfect with perfect support, but developing geometric imperfections and residual stresses as a consequence of local displacement at the supported edge and with residual stresses consistent with the induced geometric imperfections.The results raise interesting questions concerning the criteria of failure and appropriate tolerance measurements for constructed cylindrical shells.  相似文献   

12.
The present study was undertaken to characterize the structural behavior and ultimate flexural strength of steel plate I-girders under pure flexural moment at elevated temperatures. A novel design procedure along with flexural design curves was proposed to predict the flexural behavior of the I-girders and estimate corresponding ultimate flexural strengths. The main strategy of the procedure is to find an ambient-temperature equivalent of the I-girder by quantifying and formulating the effects of elevated temperatures. The proposed procedure comprises overall and partial phases. The former phase deals with the determination of equivalent laterally unbraced length, and the latter phase addresses the equivalent web and compression flange slenderness parameters. The calibration factor was defined to adapt the design curves to the effects of high compression flange slenderness parameters and residual stress at elevated temperatures. To generate comparative results, a numerical study was conducted by analyzing 216 finite element (FE) models. Fifty-four out of 216 FE models with different cross-sectional elements were dedicated to the I-girders fail by yield or local buckling failure mode, the results of which are reported in the present paper. Data fitting analysis was carried out to capture the variation of calibration factor with respect to compression flange slenderness parameters. By calibrating the proposed design procedure, the results were converged and, therefore, good conformity was reached between the numerical and parametric results.  相似文献   

13.
剖分T型钢压杆的弯扭屈曲试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
《钢结构设计规范》(GB50017—2003)提出对单轴对称截面钢压杆的弯扭屈曲需做单独验算。本文通过27根剖分T型钢压杆的试验,并借助有限元分析软件对剖分T型钢压杆的弯扭屈曲进行了几何非线性及材料非线性的有限元分析,分析时考虑了残余应力、几何缺陷的不利影响,在此基础上对规范(GB50017—2003)计算值、本文试验值、有限元计算值做了分析比较。研究结果表明规范(GB50017—2003)中单轴对称截面压杆的弯扭屈曲计算公式是安全可靠的。  相似文献   

14.
This study examines inelastic buckling of discretely braced I-girders by diaphragm bracings and torsional stiffness requirements to attain nominal flexural design strengths. To simulate the torsionally braced multi-girders, 2-girder and 4-girder systems interconnected with I-shaped cross-beams were numerically modeled by using 3D finite elements. Incremental nonlinear analyses considering the initial imperfections and residual stresses were conducted, and the effect of torsional bracing stiffness on inelastic lateral torsional buckling was evaluated. Based on the parametric analysis results, the torsional stiffness required attaining the inelastic buckling strengths specified by the AASHTO LRFD and Eurocode 3 was examined. It was found that the current design provisions suggested by AISC and SSRC overestimate the required torsional stiffness and may lead to an excessively conservative design. Improved information on the design criteria for the torsional bracings is provided.  相似文献   

15.
Residual stresses in cold-rolled stainless steel hollow sections   总被引:1,自引:0,他引:1  
Stainless steel exhibits a pronounced response to cold-work and heat input. As a result, the behaviour of structural stainless steel sections, as influenced by strength, ductility and residual stress presence, is sensitive to the precise means by which the sections are produced. This paper explores the presence and influence of residual stresses in cold-rolled stainless steel box sections using experimental and numerical techniques. In previous studies, residual stress magnitudes have been inferred from surface strain measurements and an assumed through-thickness stress distribution. In the present study, through-thickness residual stresses in cold-rolled stainless steel box sections have been measured directly by means of X-ray diffraction and their effect on structural behaviour has been carefully assessed through detailed non-linear numerical modelling. Geometric imperfections, flat and corner material properties and the average compressive response of stainless steel box sections were also examined experimentally and the results have been fully reported. From the X-ray diffraction measurements, it was concluded that the influence of through-thickness (bending) residual stresses in cold-rolled stainless steel box sections could be effectively represented by a rectangular stress block distribution. The developed ABAQUS numerical models included features such as non-linear material stress-strain characteristics, initial geometric imperfections, residual stresses (membrane and bending) and enhanced strength corner properties. The residual stresses, together with the corresponding plastic strains, were included in the FE models by means of the SIGINI and HARDINI Fortran subroutines. Of the two residual stress components, the bending residual stresses were found to be larger in magnitude and of greater (often positive) influence on the structural behaviour of thin-walled cold-formed stainless steel sections.  相似文献   

16.
Steel box sections are usually fabricated from flat plates which are welded at the corners. The welding process can introduce residual stresses and geometric imperfections into the sections which can influence their strength. For some thin-walled sections, large periodic geometric imperfections have been observed in manufactured sections. Subsequent investigations have indicated that the imperfections are in fact buckling deformations i.e. the box section has buckled due to welding residual stresses prior to any application of external load. The welding procedure and the behaviour of the box sections under load has been modelled using a finite element analysis that accounts for both geometric and material non-linearities. Tests have been carried out on box sections with a range of width to thickness ratios for the plate elements. Modelling has been shown to give good correlation with the test results. The conditions for buckling to take place as a result of the welding process have been established. A design method has been proposed.  相似文献   

17.
In this paper, the buckling behavior of girth-welded circular steel tubes subjected to bending was investigated by numerical method. Finite element (FE) simulation of the girth welding process was first performed to obtain weld-induced residual stress and deformation employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Elastoplastic large-deformation analysis in which the failure mode, the ultimate moment capacity and the moment versus end-rotation behavior of girth-welded circular steel tubes under pure bending were explored incorporating weld-induced geometric imperfection and residual stress was next carried out. Results showed that the flexural behavior of girth-welded circular steel tubes always involves local buckling near the girth weld on the compression side, which significantly affects the moment versus end-rotation response.  相似文献   

18.
《钢结构》2012,(8):75
采用数值计算方法对圆形焊接钢管的弯曲性能进行研究。用有限元(FE)法模拟环缝的焊接过程,采用三维(3D)热力耦合FE模型得到焊接残余应力和变形。结合焊接引起的几何缺陷和残余应力,对焊接圆钢管的失效模式、抗弯承载能力以及纯弯曲状态下的端部扭转性能进行了弹塑性大变形分析。结果表明,圆形焊接钢管的弯曲性能包含邻近焊缝处受压区的局部屈曲,这对端部扭矩有着显著影响。  相似文献   

19.
Many field surveys depict that steel plate girder ends tend to corrode due to the leakage of water from construction joints and/or detention of rain water near bearing regions. In many cases, buckling failures of plate girders were observed due to the excessive loss of material at the bottom portion of bearing stiffeners. In this study, the effect on the buckling strength of steel plate girder due to the corrosion damage at bearing stiffeners was investigated. Full-scale experimental tests were performed on two plate girder ends to determine the bearing capacity. Bearing capacity and failure modes were also verified by numerical analyses. Initial imperfections and welding residual stresses were also taken into account in analytical models. The simulation of the model was extended to the various corrosion damages, considering different damaged heights and thicknesses of the bearing stiffener near weld seam. All results were plotted in terms of remaining bearing capacity versus damage thickness ratio keeping the damage height of the stiffener constant. In this study, a damage parameter Reduced Thickness Ratio was used to assess the ultimate capacity and buckling of steel plate girder end with various corrosion levels.  相似文献   

20.
为研究Q460高强钢焊接工字形截面简支梁的整体稳定性能,对跨中无侧向支撑的3个双轴对称和6个单轴对称焊接工字形截面简支梁进行了整体弯扭屈曲试验。实测了试件的截面残余应力和初始几何缺陷,并分析其整体弯扭屈曲变形特征和稳定承载力。建立考虑残余应力和初始几何缺陷的有限元模型对简支梁受力进行了模拟,模拟结果与试验结果吻合良好,基于试验验证的有限元模型计算了大量不同截面尺寸和跨度的Q460高强钢焊接工字形截面简支梁的整体稳定承载力。将试验和有限元参数分析结果与GB 50017—2017《钢结构设计标准》、JGJ/T 483—2020《高强钢结构设计标准》、欧洲规范EN 1993-2005和美国规范ANSI/AISC 360-2016的简支梁整体稳定系数公式的计算结果进行比较,结果表明GB 50017—2017和ANSI/AISC 360-2016的计算结果偏于不安全,EN 1993-2005的计算结果过于保守,JGJ/T 483—2020的计算结果偏于安全且最为接近。最后,在JGJ/T 483—2020的简支梁整体稳定系数计算公式基础上引入增大系数,并根据截面高宽比的不同,取用不同的长细比指数对该公式予以修正,修正后的公式更适用于Q460高强钢焊接工字形截面简支梁的设计计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号