共查询到18条相似文献,搜索用时 187 毫秒
1.
油层自生气提高采收率技术是一种具有技术集成特点的提高采收率新技术,是通过对注水井注入处理剂,然后在地层条件下各种化学药剂发生热化学反应,产生高温、高压,形成二氧化碳气体。该技术通过对污染层解堵、高渗层封堵、混合气驱和热采等一系列作用,提高注入水波及体积和驱油效率,产生降压增注效果,进而提高采收率的新技术。 相似文献
2.
苏北油田为一复杂断块区,具有"低"、"薄"、"窄"、"深"、"多"的地质特点。共探明油藏20个,探明总储量达4200.39×104t,开发油藏17个共30个区块单元,动用储量2856.64×104t,可采储量630.42×104t。"十一五"以前,主要以试采为主,多数单元采用弹性水驱和试注水开发,由于构造破碎,储层横向变化大,注采连通性差,多数单元采收率小于15%。近年来,应用水驱、化学驱以及气驱等技术,重点开展提高储量动用程度和提高采收率攻关研究工作。其中,水驱以井网加密、油井转注、补开注采对应层等完善注采井网为重点;化学驱以开展化学调驱室内评价研究、矿场调剖试验为主;气驱以二氧化碳驱油提高采收率为主。从经济角度评价,受断块小及储量规模控制,水驱是现今提高复杂小断块油藏采收率的主要技术。而二氧化碳驱油技术及化学驱油技术,成本高、投资大,在绝大部分小断块中推广应用,不具备经济和技术优势。 相似文献
3.
正二氧化碳提高原油采收率(CO2-EOR)技术已广泛应用于美国、加拿大、北海、安哥拉、特立尼达、土耳其等国家和地区。美国是目前利用CO2-EOR技术最多的国家,到2008年美国利用CO2-EOR技术的原油产量已近1243.9×104t/a,占世界的87.75%,项目数为105个,占世界的88.2%。美国新一代CO2-EOR技术具有大幅度提高CO2注入量等特点;或通过改进布井方案和驱油方式,增加打水平井等,提高波及程度;或改善流度比,控制CO2的黏性,提高驱替效率。应用新一代技术美国 相似文献
4.
调研了国内外有关微生物提高采收率的文献,对其理论研究及技术应用、进展作了综述,并对其发展前景进行展望。 相似文献
5.
6.
基于单元发展阶段,八区馆上现处于后续水驱阶段。对井网完善程度低,损失储量严重,高含水开发期馆陶组油藏,围绕“两率”(储量动用率、油田采收率)、“两控”(控递减、控含水),通过精细油藏分析,采取油水井综合治理措施,培养稳升井组和长寿井,改善了水驱开发效果,提高了区块采收率,对其它同类油田的水驱开发具有借鉴意义。 相似文献
7.
通过对不同国家提高采收率技术(EOR)应用情况进行分析、统计,了解提高采收率技术的应用状况和发展趋势。2014年,世界EOR产量约为46.1×104m3/d,约占世界产油量的3.3%。稠油热采、气驱和化学驱技术是世界工业化应用的三大提高采收率技术。其中,稠油热采技术相对成熟,应用规模最大,其产量接近世界EOR产量的一半;气驱和化学驱技术发展较快,应用规模不断扩大,其产量约占世界EOR产量的四分之一。在高油价下,提高采收率技术得到更为广泛的关注,多个国家都重视新技术、新方法的研究与试验。美国、中国、加拿大、委内瑞拉和俄罗斯是提高采收率技术应用规模较大的5个国家,中国的化学驱和稠油热采技术及应用规模居世界前列,已成为提高采收率技术应用大国。适应苛刻油藏条件的驱油剂、驱油体系和流度控制技术,是制约提高采收率技术工业化应用的瓶颈;不同成熟技术的组合应用将是提高采收率技术的发展方向。 相似文献
8.
中原油田提高采收率优化技术 总被引:1,自引:0,他引:1
中原油田相继开展了CO2吞吐、N2驱、空气驱、合成聚合物驱、交联聚合物驱、微生物采油等项现场试验。鉴于中原油田地层温度高、地层水矿化度高,常规三次采油技术难以适应。对中原油田提高采收率的技术进行优化分析,对油田地质特点、开采特点和不同类型油藏采收率现状进行归纳,并对各技术潜力进行分析,得出结论:从储层条件和原油性质来看,适用中原油田的三次采油方法是CO2混相驱、天然气非混相驱,其次是化学驱。研究预测显示,通过水驱综合调整和气驱,可提高采收率11.1个百分点,达到40.5%,其中水驱综合调整增加可采储量3841×104t,提高采收率7.4个百分点,三次采油提高采收率3.7个百分点。总结出中原油田提高采收率的方向和思路:水驱提高采收率仍是油田当前开发的重点,重组开发层系、强化差层开采、提高油藏水驱采收率,大力发展堵水调剖等配套工艺技术、提高水驱控制程度,气驱仍是今后的主要发展方向。 相似文献
9.
从20世纪50年代起,火烧油层主要用于重油油藏。近几年,已将高压注空气作为火烧油层的驱替工艺之一应用到轻油油藏,并且已经证实高压注空气驱是一种有效的提高原油采收率方法。原油粘度的降低对于火烧油层工艺是非常重要的。相反地,对于高压注空气不是那么重要,这是因为轻油的原始粘度不如重油高。高压注空气被认为是一种烟道气注入过程,这是因为烟道气驱是高压注空气最重要的提高采收率因素之一。但是烟道气驱对于高含水饱和度油藏是无效地,而热效应则成为提高采收率的一种重要因素。
本文描述了水驱后轻油油藏高压注空气的可行性、采油机理和几个模拟研究,从而确定了影响原油采收率最重要的因素。
通过燃烧管实验和数值模拟进行了可行性研究。在燃烧管实验中观察原油的采收率。该实验所使用的压碎岩心先进行了水驱。实验结果表明高压注空气能应用到高含水轻油油藏。模拟结果也说明了其可行性。实验和模拟结果同时表明高压注空气热效应之一的蒸馏作用是高压注空气提高原油采收率的主要因素。
为获得最大的原油采收率,控制空气的注入量是非常重要的,因为空气的过早气窜会严重的缩短产油期。研究的结果表明,不仅完井设计,还有合理的调节空气的注入量都能提高垂向波及效率,并且行列注气驱替井网对于增加面积波及系数非常有效。 相似文献
10.
CO2驱油机理及应用现状 总被引:5,自引:0,他引:5
综述了注CO2提高采收率的机理、CO2驱油的开发方式以及国内外开展现场试验的情况。在现场应用CO2混相和非混相都可有效提高采收率,合适的注CO2工艺需根据油藏条件选择。指出了我国注CO2提高采收率技术面临混相压力过高、腐蚀与结垢、气源、窜流严重、固相沉积等问题。 相似文献
11.
Richard S. Middleton 《国际能源研究杂志》2013,37(14):1794-1810
To meet next generation energy needs such as wind‐ and solar‐generated electricity, enhanced oil recovery (EOR), CO2 capture and storage (CCS), and biofuels, the US will have to construct tens to hundreds of thousands of kilometers of new transmission lines and pipelines. Energy network models are central to optimizing these energy resources, including how best to produce, transport, and deliver energy‐related products such as oil, natural gas, electricity, and CO2. Consequently, understanding how to model new transmission lines and pipelines is central to this process. However, current energy models use simplifying assumptions for deploying pipelines and transmission lines, leading to the design of more costly and inefficient energy networks. In this paper, we introduce a two‐stage optimization approach for modeling CCS infrastructure. We show how CO2 pipelines with discrete capacities can be ‘linearized’ without loss of information and accuracy, therefore allowing necessarily complex energy models to be solved. We demonstrate the new approach by designing a CCS network that collects large volumes of anthropogenic CO2 (up to 45 million tonnes of CO2 per year) from ethylene production facilities and delivers the CO2 to depleted oil fields to stimulate recovery through EOR. Utilization of anthropogenic CO2 has great potential to jumpstart commercial‐scale CCS while simultaneously reducing the carbon footprint of domestic oil production. Model outputs illustrate the engineering challenge and spatial extent of CCS infrastructure, as well as the costs (or profits) of deploying CCS technology. We show that the new linearized approach is able to offer insights that other network approaches cannot reveal and how the approach can change how we develop future energy systems including transporting massive volumes of shale gas and biofuels as well as electricity transmission for wind and solar energy. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
12.
Injecting CO2 into oil reservoirs can improve the oil recovery, meanwhile achieve CO2 storage. The diffusion of CO2 in oil-water systems has a substantial impact on this process. The interface significantly affects the mass transfer of CO2 between oil and water phase. In this paper, based on the determination of the CO2 diffusion coefficient in oil or water phases, the diffusion processes of CO2 from oil to water were experimental... 相似文献
13.
14.
Recovery of CO2 with monoethanolamine (MEA) and hot potassium carbonate (K2CO3) absorption processes in an integrated gasification combined cycle (IGCC) power plant was studied for the purpose of development of greenhouse gas control technology. Based on energy and exergy analysis of the two systems, improvement options were provided to further reduce energy penalty for the CO2 separation in the IGCC system. In the improvement options, the energy consumption for CO2 separation is reduced by about 32%. As a result, the thermal efficiency of IGCC system is increased by 2.15 percentage‐point for the IGCC system with MEA absorption, and by 1.56 percentage‐point for the IGCC system with K2CO3 absorption. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
Jinhyung Cho Tae Hong Kim Namjoon Chang 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2018,40(10):1242-1249
The addition of liquefied petroleum gas (LPG) to the CO2 stream reduces interfacial tension (IFT) between the injected gas and the reservoir oil, and it changes the gas-liquid relative permeability by making it more water-wet, which affects not only the oil mobility, but also the vertical sweep efficiency. The reduction of the IFT decreases vertical sweep efficiency because it enhances the relative permeability of the solvent, resulting in an increase in the viscous gravity number. For CO2-LPG enhanced oil recovery (EOR), oil recovery is enhanced by up to 47%, as compared to CO2 flooding, when the relative permeability change caused by the IFT is not considered. By taking the vertical sweep-out caused by IFT and relative permeability change into consideration, this increase is reduced to 40%. These results indicate the importance of considering the relative permeability and IFT change when predicting the performance of the CO2-LPG EOR process. 相似文献
16.
燃煤电站富氧燃烧及二氧化碳捕集技术研究现状及发展 总被引:2,自引:0,他引:2
本文对富氧燃烧和二氧化碳捕集技术的节能机理及其带来的社会效益进行了较为详尽的阐述,介绍了富氧燃烧及二氧化碳捕集技术的发展历程及现状,指出富氧燃烧及二氧化碳捕集技术在节能及环保方面将有广阔的前景。 相似文献
17.
Disposal of anthropogenic CO2 in the ocean has been considered as a method to counteract global warming. A desirable method of the ocean disposal is to convert the less dense liquefied CO2 into denser CO2 hydrate via a submerged hydrate crystallizer at a depth <500 m. The fate of CO2 hydrate in the ocean has been investigated. It is shown in this study that hydrate particles released in the ocean are physicochemically unstable; however, hydrate decomposition occurs only as a surface phenomenon. Because CO2 hydrate is denser than seawater, hydrate particles will sink in the ocean. During the descending process, the hydrate particles dissolve gradually in seawater owing to decomposition occurring continuously at surfaces of hydrate particles. This dissolution fate of CO2 hydrate in the ocean is significantly different from the previous prediction that the disposed CO2 hydrate would exist as a long‐lasting entity in the ocean. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献