首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the binding of the effector domains of myristoylated alanine-rich C kinase substrate (MARCKS) and of MARCKS-related protein (MRP) to lipid model membranes. For membrane systems we used lipid monolayers on a Langmuir trough and black lipid membranes (BLM). The binding of the peptides was detected by monitoring changes in the boundary potential of the lipid membranes. The vibrating plate technique (VPT) and the method of inner field compensation (IFC) were used for the monolayer and for the BLM, respectively. We could show that the effector domain of MARCKS binds to acidic lipid membranes mainly via electrostatic interactions and to zwitterionic lipid membranes via hydrophobic interactions. Isobaric measurements on lipid monolayers revealed that binding of both effector domains is accompanied by partial insertion of the peptides into the membrane. Adsorption and insertion of the peptides could be followed simultaneously by the VPT and by recording the increase in area of the lipid monolayer, respectively. No temporal delay could be observed between adsorption and insertion of the peptides, demonstrating that adsorption is the rate-limiting step and that insertion is faster than the time resolution of the experiments, i.e., a few seconds. Both the IFC and the VPT did not show any significant difference between the behaviors of the effector domains of MARCKS and MRP. With the IFC we show that calcium can regulate the translocation of the MARCKS effector peptide between the membrane and calmodulin (CaM) in the bulk. Our results indicate, that the IFC and VPT are suitable qualitatively, and to a certain extent quantitatively, as membrane binding assays.  相似文献   

2.
The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally, it is found that the binding capacity for the native protein is increased at low ionic strength to a value that is greater than that for complete surface coverage, and that corresponds more closely to neutralization of the effective charge (determined from the ionic strength dependence), rather than of the total net charge, on the protein. Electron spin resonance experiments with spin-labeled lipids indicate that this different mode of binding arises from a penetration or disturbance of the bilayer surface by the protein that may alleviate the effects of in-plane interactions under conditions of strong binding.  相似文献   

3.
The adsorption model for soluble surfactants has been modified for suspensions of pulmonary surfactant. The dynamic adsorption behavior may be governed by a two-step process: (1) the transfer of molecules between the surface layer and the subsurface layer, which has a thickness of a few molecular diameters only; (2) the exchange of molecules between the subsurface and the bulk solution. The first step is an adsorption process and the second step is a mass transfer process. Between the subsurface and the bulk solution is an undisturbed boundary layer where mass transport occurs by diffusion only. The thickness of this boundary layer may be reduced by stirring. Rapid film formation by adsorption bursts from lipid extract surfactants, as observed in the captive bubble system, suggests that the adsorption process as defined above is accompanied by a relatively large negative change in the free energy. This reduction in the free energy is provided by a configurational change in the association of the specific surfactant proteins and the surfactant lipids during adsorption. The negative change in the free energy during film formation more than compensates for the energy barrier related to the film surface pressure. In the traditional view, the extracellular alveolar lining layer is composed of two parts, an aqueous subphase and a surfactant film, believed to be a monolayer, at the air-water interface. The existence and continuity of the aqueous subphase has recently been demonstrated by Bastacky and coworkers, and a continuous polymorphous film has recently been shown by Bachofen and his associates, using perfusion fixation of rabbit lungs with slight edema. In the present chapter, we have described a fixation technique using a non-aqueous fixation medium of perfluorocarbon and osmium tetroxide to fix the peripheral airspaces of guinea pig lungs. A continuous osmiophilic film which covers the entire alveolar surface, including the pores of Kohn, is demonstrated. By transmission electron microscopy, the surface film frequently appears multilaminated, not only in the alveolar corners or crevices, but also at the thin air-blood barrier above the capillaries. Disk-like structures or multilamellar vesicles appear partially integrated into the planar multilayered film. In corners and crevices, tubular myelin appears closely associated with the surface film. Tubular myelin, however, is not necessary for the generation of a multilaminated film. This is demonstrated in vitro by the fixation for electron microscopy of a film formed from lipid extract surfactant on a captive bubble. Films formed from relatively high surfactant concentration (1 mg/ml of phospholipid) are of variable thickness and frequent multilayers are seen. In contrast, at 0.3 mg/ml, only an amorphous film can be visualized. Although near zero minimum surface tensions can be obtained for both surfactant concentrations, film compressibility and mechanical stability are substantially better at the higher concentrations. This appears to be related to the multilaminated structure of the film formed at the higher concentration.  相似文献   

4.
We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail.  相似文献   

5.
Polydimethylsiloxane (PEP) is widely used in medical prostheses and therefore is in contact with plasma and secretory proteins. Two pair of globular proteins, lactoferrin (Lf) and transferrin (Trf), and bovine IgG1 and IgG2a, which differ substantially between pair members in their pl, were used to study the interaction of a PEP widely used in breast implants and soluble protein. Studies were done using iodinated proteins over a concentration range that resulted in an apparent protein monolayer. Secondary incubations with dilute protein solutions were needed to form the monolayer on PEP, possibly as a consequence of micro air bubbles trapped on its highly textured surface as shown by atomic force microscopy. Immunoassay quality polystyrene microtiter wells were used as controls. Adsorption studies were routinely performed at pH 4, 7 and 10 and at ionic strengths corresponding to 0.95, 9.5 and 90.0 mS. The protein capture capacity (PCC) of PEP for Lf and Trf was optimal at physiological pH and ionic strength and comparable under these conditions to that of Immulon 2 (Imm 2) microtiter wells. While increasing the ionic strength and pH further increases the PCC of Imm 2 for Lf and Trf, this markedly lowered the PCC of PEP for these proteins suggesting that initial polar interactions may precede subsequent hydrophobic bonding to PEP. This was tested using a hydrophilic variant of PEP, which when tested in a 90.0 mS buffer, showed a > five-fold lower PCC at neutral and alkaline pH. The greatly reduced PCC of the hydrophilic variant might also suggest that hydrophilic variants of silicone would be more biocompatible than those currently used. The PCC of PEP for the IgGs was less than that of Imm 2 but still optimal at physiological conditions. Consistent with the data on Lf/Trf, PCC progressively decreased with increasing ionic strength at alkaline pH. Differences in pl between the protein pairs had only a marginal effect on the PCC of PEP. Monolayer adsorption on both PEP and Imm 2 was slowly reversible and greater in the presence of free ligand (< 2% in 16 h) suggesting that the process follows Mass Law principles. However, even in the presence of non-ionic detergent and free ligand, 85-90% remained bound on either surface. Thus, desorption of proteins in the monolayer should not complicate subsequent immunochemical studies conducted on adsorbed monolayers.  相似文献   

6.
Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine.  相似文献   

7.
A method is described for incorporation of water-soluble protein Staphylococcal protein A (SpA) into phospholipid monolayer using covalent protein-lipid conjugates in detergent solution. The amphiphilic conjugates have solubility properties very similar to intergral membrane proteins. When the conjugates are applied into dipalmitoyl-phosphatidic acid monolayer, a protein containing monolayer is formed on subphase surface. The monolayer is transferred to pre-coated substrate surface to form an artificial membrane. Results show that unmodified SpA is readily ejected from the monolayer when compressing the monolayer but modified SpA incorporates into the monolayer stably. The incorporation of the protein is proportional to the lipid coupling degree. When the protein is excessively modified, the IgG binding activity of the SpA in the membrane is lost significantly.  相似文献   

8.
Colipase is a cofactor protein which forms a 1:1 complex with pancreatic lipase. This facilitates lipase adsorption to phosphatidylcholine-rich interfaces, presumably as a consequence of the higher affinity of colipase for such interfaces. According to this model, the presence of colipase in an interface should be sufficient to enable lipase adsorption from the aqueous phase. To test this hypothesis, mixed monolayers of colipase, phosphatidylcholine, and fatty acid at the argon-buffer interface were exposed to lipase injected into the stirred aqueous subphase. Spread colipase remained associated with the lipid monolayer in a surface pressure- and lipid composition-dependent manner. For example, with diacylphosphatidylcholine alone, colipase remained in the lipid monolayer at surface pressures 相似文献   

9.
Annexins comprise a family of proteins that exhibit a Ca2+-dependent binding to phospholipid membranes that is possibly relevant to their in vivo function. Although substantial structural information about the ternary (protein/lipid/Ca2+) interaction in bulk phases has been derived from a variety of techniques, little is known about the temporal and spatial organization of ternary monolayer films. The effect of Ca2+ on the interactions between annexin V (AxV) and anionic DMPA monolayers was therefore investigated using three complementary approaches: surface pressure measurements, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM). In the absence of Ca2+, the injection of AxV into an aqueous subphase beneath a DMPA monolayer initially in a liquid expanded phase produced BAM images revealing domains of protein presumably surrounded by liquid-expanded lipid. The protein-rich areas expanded with time, resulting in reduction of the area available to the DMPA and, eventually, in the formation of condensed lipid domains in spatial regions separate from the protein film. There was thus no evidence for a specific binary AxV/lipid interaction. In contrast, injection of AxV/Ca2+ at a total Ca2+ concentration of 10 microM beneath a DMPA monolayer revealed no pure protein domains, but rather the slow formation of pinhead structures. This was followed by slow (>2 h) rigidification of the whole film accompanied by an increase in surface pressure, and connection of solid domains to form a structure resembling strings of pearls. These changes were characteristic of this specific ternary interaction. Acyl chain conformational order of the DMPA, as measured by nu(sym)CH2 near 2850 cm(-1), was increased in both the AxV/DMPA and AxV/DMPA/Ca2+ monolayers compared to either DMPA monolayers alone or in the presence of Ca2+. The utility of the combined structural and temporal information derived from these three complementary techniques for the study of monolayers in situ at the air/water interface is evident from this work.  相似文献   

10.
The structures formed by a pulmonary surfactant model system of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and recombinant surfactant-associated protein C (SP-C) were studied using scanning force microscopy (SFM) on Langmuir-Blodgett films. The films appeared to be phase separated, in agreement with earlier investigations by fluorescence light microscopy. There were smooth polygonal patches of mostly lipid, surrounded by a corrugated rim rich in SP-C. When the films were compressed beyond the equilibrium surface pressure, the protein-rich phase mediated the formation of layered protrusions. The height of these multilamellar structures embodied equidistant steps slightly higher than a DPPC double layer in the gel phase. At the air-water interface too, a high compressibility at low surface tension was indicative of the exclusion of matter. The exclusion process proved to be fully reversible. The present study demonstrates that some of the matter of the model pulmonary surfactant can move in and out of the active monolayer. The SFM images revealed a lipid-protein complex that was responsible for the reversible exclusion of double-layer structures. This mechanism may be important in the natural system too, to keep the surface tension of the alveolar air/water interface constantly low over the range of area encountered upon breathing.  相似文献   

11.
The biophysical activity of lung surfactant depends, to a large extent, on the presence of the hydrophobic surfactant proteins B (SP-B) and C (SP-C). The role of these proteins in lipid adsorption and lipid squeeze-out under dynamic conditions simulating breathing is not yet clear. Therefore, the aim of this study was to investigate the interaction of spread hydrophobic surfactant proteins with phospholipids in a captive-bubble surfactometer during rapid cyclic area changes (6 cycles/min). We found that SP-B and SP-C facilitated the rapid transport of lipids into the air-water interface in a concentration-dependent manner (threshold concentration > or = 0.05:0.5 mol% SP-B/SP-C). Successive rapid cyclic area changes did not affect the concentration-dependent lipid adsorption process, suggesting that SP-B and SP-C remained associated with the surface film.  相似文献   

12.
C-reactive protein (CRP) is one of the most characteristic acute-phase proteins in humans and many other animals. It binds to phosphorylcholine in a calcium-dependent manner. In addition, CRP activates the complement systems via the classical pathway. The interaction between rabbit CRP (rCRP) and model biological membrane is studied using dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine monolayers. Observations with fluorescence microscopy indicate that rCRP is more likely to be incorporated in the liquid phase of monolayers. Such incorporation does not depend on the presence of calcium and is not inhibited by phosphocholine. The area occupied by the protein when incorporated into the monolayer was estimated. The dipole moment density of the protein crossing the air/water interface was measured by applying an external electric field. Our results indicate that calcium binding leads to a conformational change in CPR, which might modify the orientation of CRP in the monolayer. In addition, a negative charge or negative difference in dipole moment density facilitates the incorporation of CPR into the monolayer.  相似文献   

13.
Transport of unesterified fatty acids (FA) into cells has been viewed either as a simple diffusion process regulated mainly by lipid physical chemistry or as a more complex process involving protein catalysis. In this review FA transport in cell membranes is broken down into three essential steps: adsorption, transmembrane movement, and desorption. The physical properties of FA in aqueous, membrane, and protein environments relevant to transport mechanisms are discussed, with emphasis on recent information derived from NMR and fluorescence studies. Because of their low solubility in water and high hydrophobicity, FA bind rapidly and avidly to model membranes (phospholipid bilayers); if albumin is a donor, FA desorb rapidly to reach their equilibrium distribution between the membrane and albumin. The ionization properties of FA in a phospholipid bilayer result in a high population of the un-ionized form (approximately 50%) at pH 7.4, which diffuses across the lipid bilayer (flip-flops) rapidly (t(1/2) < 1 sec). Desorption of FA from a phospholipid surface is slower than transmembrane movement and dependent on the FA chain length and unsaturation, but is rapid for typical dietary FA. These physical properties of FA in model systems predict that proteins are not essential for transport of FA through membranes. The only putative FA transport protein to be purified and reconstituted into phospholipid bilayers, the mitochondrial uncoupling protein (UCP1), was shown to transport the FA anion in response to FA flip-flop. New experiments with cells have found that FA movement into cells acidifies the cytosol, as predicted by the flip-flop model.  相似文献   

14.
The interaction of the positively charged synthetic amphipathic peptide fragment gp41(828) corresponding to a segment from the carboxyterminal region of the HIV envelope glycoprotein gp41 with lipid monolayers spread at the air-water interface has been studied by film balance measurements. The peptide itself does not form a stable monolayer but interacts with phospholipids spread together on the aqueous surface. Upon compression of a mixed phosphatidylcholine-peptide monolayer the peptide is irreversibly squeezed out of the lipid-peptide monolayer. In contrast, with negatively charged phosphatidylglycerol stable lipid-peptide monolayers are formed even in the presence of up to 30 mol% peptide. The monolayer may be expanded and compressed repeatedly without significant loss of substance. After addition of calcium ions to the subphase of a phosphatidylglycerol-peptide monolayer the peptide is to some extent excluded from the monolayer. In contrast to phosphatidylcholine monolayers this process is partly reversible and the excluded material is reincorporated into the film during subsequent expansion. We conclude that attached to the headgroups of the lipid monolayer a peptide-layer stabilized at the surface by electrostatic interactions is formed. The surface action may lead to rigidified lipid-peptide domains causing an increased membrane permeability which might correspond to a cytopathologic function of the protein fragment.  相似文献   

15.
In a previous paper we described the experiments and the framework of a model for the exchange of monooleoylphosphatidylcholine with a single egg phosphatidylcholine membrane. In the present paper a model is presented that relates the experimentally measured apparent characteristics of the overall kinetics of lysolipid exchange to the true rates of lysolipid exchange and interbilayer transfer. It is shown that the adsorption of the lysolipid follows two pathways: one through the adsorption of lipid monomers and other through the fusion of micelles. The desorption of lysolipid follows a single pathway, namely, the desorption of monomers. The overall rate of fast desorption under convective flow conditions gives the true rate of monomer desorption from the outer membrane monolayer. The overall rate of both slow lysolipid uptake and slow desorption gives the rate of interbilayer transfer. Because of the uneven distribution of lysolipid between the two monolayers during its uptake, one of the membrane monolayers is apparently extended relative to the other. This relative extension of one of the monolayers induces a monolayer tension. The induced monolayer tension can increase up to 7 mN.m-1, when most of the intercalated lysolipid only partitions into the monolayer facing the lysolipid solution. This value is similar to the measured value for the critical monolayer tension of membrane failure, which is on the order of 5 mN.m-1. The similarity of the magnitudes of the induced monolayer tension during monooleoylphosphatidylcholine exchange and the monolayer tension of membrane failure suggests that the interbilayer lipid transfer may be affected by the formation of short living membrane defects. Furthermore, the pH-induced interbilayer exchange of phosphatidylglycerol is considered. In this case, it is shown that the rate of interbilayer transfer is a function of the phosphatidylglycerol concentration in the membrane.  相似文献   

16.
We present a molecular-level theory for lipid-protein interaction and apply it to the study of lipid-mediated interactions between proteins and the protein-induced transition from the planar bilayer (Lalpha) to the inverse-hexagonal (HII) phase. The proteins are treated as rigid, membrane-spanning, hydrophobic inclusions of different size and shape, e.g., "cylinder-like," "barrel-like," or "vase-like." We assume strong hydrophobic coupling between the protein and its neighbor lipids. This means that, if necessary, the flexible lipid chains surrounding the protein will stretch, compress, and/or tilt to bridge the hydrophobic thickness mismatch between the protein and the unperturbed bilayer. The system free energy is expressed as an integral over local molecular contributions, the latter accounting for interheadgroup repulsion, hydrocarbon-water surface energy, and chain stretching-tilting effects. We show that the molecular interaction constants are intimately related to familiar elastic (continuum) characteristics of the membrane, such as the bending rigidity and spontaneous curvature, as well as to the less familiar tilt modulus. The equilibrium configuration of the membrane is determined by minimizing the free energy functional, subject to boundary conditions dictated by the size, shape, and spatial distribution of inclusions. A similar procedure is used to calculate the free energy and structure of peptide-free and peptide-rich hexagonal phases. Two degrees of freedom are involved in the variational minimization procedure: the local length and local tilt angle of the lipid chains. The inclusion of chain tilt is particularly important for studying noncylindrical (for instance, barrel-like) inclusions and analyzing the structure of the HII lipid phase; e.g., we find that chain tilt relaxation implies strong faceting of the lipid monolayers in the hexagonal phase. Consistent with experiment, we find that only short peptides (large negative mismatch) can induce the Lalpha --> HII transition. At the transition, a peptide-poor Lalpha phase coexists with a peptide-rich HII phase.  相似文献   

17.
A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids.  相似文献   

18.
The effects of the adsorption of the fluorescent potential-sensitive dyes RH-421, RH-237 and RH-160 on the bilayer lipid membrane were studied. It was shown that a dipole potential drop, positive in the hydrophobic part of the membrane, arose due to the dye adsorption. The dye adsorption led to a considerable increase of the rate constant of hydrophobic anion translocation through the membrane, but did not affect their partition coefficient between membrane and water. It implies that the region of the membrane where the potential drops is located deeper than the adsorption plane of hydrophobic ions. The values of boundary potential differences were estimated by two independent methods with unilateral and bilateral application of the dyes to lipid bilayer membranes. The results suggest that RH dye molecules penetrate through the lipid bilayers. The values of zeta-potential in liposomes did not change on dye adsorption. Hence, dye molecules are adsorbed in a form that does not change the surface charge. We estimated the effects of electric field of dye dipole layer on an individual dipole located in the same layer and on ion transport through a membrane protein Na+/K+-ATPase. It turned out that the local electric field of each dye dipole decayed so rapidly that a neighbouring dye molecule did not feel it. It also appeared that RH dyes could have but a minor effect on the electrogenic transport performed by the sodium pump in the examined range of dye concentrations.  相似文献   

19.
Performance Evaluation of FRP Bridge Deck Component under Torsion   总被引:1,自引:0,他引:1  
Torsional response of fiber-reinforced polymeric (FRP) composites is more complex than conventional materials. Therefore, understanding torsional response of FRP components along with shear behavior leads to development of safe and accurate design specifications. Experimental data of multicellular FRP bridge deck components have been compared with simplified theoretical model studies focused on torsional rigidity, equivalent in-plane shear modulus, in-plane shear strain, and joint efficiency. Simplified classical lamination theory (SCLT) is used to predict torsional rigidity. Results from SCLT, experimental data, and finite-element analysis validate proposed methodology to find torsional rigidity. Data on torsional rigidity and equivalent in-plane shear modulus correlated (less than 12%) with results from SCLT and finite-element analysis. In-plane shear strain based on SCLT is also concordant with test results. In an FRP deck system with 100% joint efficiency, the two-dimensional effect (plate action) on torsional rigidity results in a 20% higher rigidity when compared to a beam model. However, if a refined model has only 80% joint efficiency, then plate action results in a 6% difference from the beam model. In addition, service load design criteria for FRP decks under shear must not excess 16% of the ultimate strain by accounting for environmental and aging effects.  相似文献   

20.
Hydrophobic interactions between lipid bilayers and imbedded membrane proteins couple protein conformation to the mechanical properties of the bilayer. This coupling is widely assumed to account for the regulation of membrane protein function by the membrane lipids' propensity to form nonbilayer phases, which will produce a curvature stress in the bilayer. Nevertheless, there is only limited experimental evidence for an effect of bilayer curvature stress on membrane protein structure. We show that alterations in curvature stress, due to alterations in the electrostatic energy of dioleoylphosphatidylserine bilayers, modulate the structurally well-defined gramicidin A monomer <--> dimer reaction. Maneuvers that decrease the electrostatic energy of the unperturbed bilayer promote channel dissociation; we measure the change in interaction energy. The bilayer electrostatic energy thus can affect membrane protein structure by a mechanism that does not involve the electrostatic field across the bilayer, but rather electrostatic interactions among the phospholipid head groups in each monolayer which affect the bilayer curvature stress. These results provide further evidence for the importance of mechanical interactions between a bilayer and its imbedded proteins for protein structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号