首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-field scanning microwave microscopy was applied to investigate the dielectric properties and microstructure in a polycrystalline LaAlO3–TiO2 diffusion couple, which included three regions containing different phases and microstructures. Relatively low (La2Ti4Al18O38), high (α-La2/3TiO3), and intermediate (La4Ti9O24) dielectric constant phases were distinguished at the inter-diffusion interface in optical, backscattered electron scanning electron microscopy, and scanning microwave microscopy (SMM) images. The relative ranking of dielectric constants based on SMM examination was as follows: TiO2>α-La2/3TiO3>La4Ti9O24>LaAlO3>La2Ti4Al18O38. La2/3TiO3 and LaAlO3 will form solid solutions in the LaAlO3-rich region. The reaction paths leading to phase development are discussed.  相似文献   

2.
The ternary phase diagram of Al2O3-La2O3-TiO2 at 1400°C was determined with 12 compatibility triangles. Al2O3 stabilizes the A-site-deficient La2/3TiO3 perovskite structure. According to XRD and microstructural investigations, the solid solution extends along the La2/3TiO3-LaAlO3 tie line from at least 4 mol% LaAlO3 to pure LaAlO3. With increasing LaAlO3 content, the stabilized La2/3TiO3 structure changes from orthorombic via tetragonal to cubic.  相似文献   

3.
Microstructural studies were conducted on the domain boundaries in Sr(Mg1/3Nb2/3)O3 (SMN) complex perovskite compound using X-ray diffractometry and transmission electron microscopy. Both the 1:2 chemical ordering of B-site cations and the tilting of oxygen octahedra were involved in SMN. SMN had a 1:2 ordered monoclinic unit cell, which was distorted by the antiphase tilting of oxygen octahedra. Two types of domain boundaries were found: the antiphase boundaries (APBs), which are not confined crystallographically, and the ferroelastic domain boundaries, which were parallel to the crystallographic planes. SMN had the superlattice reflections of type ±⅙[111] and ±½[111] in the electron diffraction patterns, which cannot be indexed in terms of the 1:2 ordered trigonal phase with only a hexagonal unit cell. The presence of the ferroelastic domains that contained both the 1:2 ordered and the antiphase tilting had been verified by a high-resolution transmission electron microscopy lattice image. The structure of SMN was well explained by a model proposed by other researchers. The formation of the 1:2 ordered domains preceded the ferroelastic domains. Normally, the growth of the ferroelastic domain is not affected by APBs, but it is interrupted by them when the driving force for growth is insufficient, resulting in the stoppage of the domains at APBs.  相似文献   

4.
The vaporization of the samples of the compositions Ga2O3+ LaGaO3, LaGaO3+ La4Ga2O9, and La4Ga2O9+ La2O3 was investigated using Knudsen effusion mass spectrometry in the temperature range 1494–1937 K. The partial pressures of the gaseous species O2, Ga, GaO, Ga2O, and LaO were determined over the samples investigated. The equilibrium partial pressures were used for the calculation of the thermodynamic activities of the components at 1700 K. Gibbs energies of formation of LaGaO3( s ) and La4Ga2O9( s ) at 1700 K from the component oxides were derived from the thermodynamic activities as −46.4 ± 4.7 and −99.2 ± 7.9 kJ·mol−1, respectively. The results were compared with the literature data obtained using other methods.  相似文献   

5.
La0.8Sr0.2Cr0.9Ti0.1O3 perovskite has been designed as an interconnect material in high-temperature solid oxide fuel cells (SOFCs) because of its thermal expansion compatibility in both oxidizing and reducing atmospheres. La0.8Sr0.2Cr0.9Ti0.1O3 shows a single phase with a hexagonal unit cell of a = 5.459(1) Å, c = 13.507(2) Å, Z = 6 and a space group of R -3 C . Average linear thermal expansion coefficients of this material in the temperature range from 50° to 1000°C were 10.4 × 10−6/°C in air, 10.5 × 10−6/°C under a He–H2 atmosphere (oxygen partial pressure of 4 × 10−15 atm at 1000°C), and 10.9 × 10−6/°C in a H2 atmosphere (oxygen partial pressure of 4 × 10−19 atm at 1000°C). La0.8Sr0.2Cr0.9Ti0.1O3 perovskite with a linear thermal expansion in both oxidizing and reducing environments is a promising candidate material for an SOFC interconnect. However, there still remains an air-sintering problem to be solved in using this material as an SOFC interconnect.  相似文献   

6.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

7.
A group of new y M-phase/(1− y ) Li2+ x Ti1−4 x Nb3 x O3 composite ceramics with adjustable permittivities for low-temperature co-fired ceramic applications was initially investigated in the study. The 0.5 M-phase/0.5 Li2+ x Ti1−4 x Nb3 x O3 ( x =0.01, 0.02, 0.04, 0.06, 0.081) composite ceramics were first investigated to find the appropriate "Li2TiO3ss" composition ( x value). The best dielectric properties of ɛr=40.1, Q × f values up to 9318 GHz, τf=25 ppm/°C, were obtained for the ceramics composites at x =0.02. Based on the good dielectric properties, the suitable "Li2TiO3ss" composition with x =0.02 was mixed with the Li1.0Nb0.6Ti0.5O3 powder as the ratio of y "M-phase"/(1− y ) "Li2TiO3ss" ( y =0.2, 0.4, 0.5, 0.6, 0.8). By adjusting the y values, the group of composite ceramics could exhibit largely are adjustable permittivities varying from ∼20 to ∼60, while Q × f and τf values relatively good. Nevertheless, in this study, because there are interactions between the M-phase and Li2TiO3ss during sintering process, their microwave dielectric properties could not be predicted precisely by the empirical model.  相似文献   

8.
Subsolidus phase relations in the system Na2O-Bi2O3-TiO2 at 1000°C were investigated by solid-state reaction techniques and X-ray diffraction methods. Five ternary compounds were observed in the system: Na0.5Bi4.5Ti4O15; Na0.5Bi0.5TiO3; a cubic pyrochlore solid solution composed of xNa2O.25Bi2O3.(75−;x) TiO2 where x is 2.5 to 3.75; a new compound Na0.5Bi8.5Ti7O27 indexed with the orthorhombic cell of a = 5.45, b = 5.42, and c = 36.8 Å; and an unidentified phase with the probable composition NaBiTi6O14.  相似文献   

9.
The structure and electrical properties of an A-site-deficient perovskite compound found in the La2/3TiO3-La1/3NbO3 system were investigated. The composition of the perovskite compound seemed to be very close to La0.633(Ti0.90Nb0.10)O3. X-ray diffraction analysis revealed a superstructure with a doubled c -axis parameter, resulting from an ordered arrangement of the A-site cation vacancies. Impedance measurements on the compound showed that La0.633(Ti0.90Nb0.10)O3 had high ionic conductivity at relatively low temperature (<770 K) and increased electronic conduction at high temperature (>770 K). The bulk ionic conductivity was comparable with that of La0.683(Ti0.95Al0.05)O3, which has the highest ionic conductivity among the La-(Ti,Al)-O perovskite compounds.  相似文献   

10.
Li+ ions have been successfully doped into the La sites of (La0.95Eu0.05)2Ti2O7 nanocrystals through a facile citric acid sol–gel method. The doping concentration of Li+ ions can be as high as 15 mol%. Photoluminescence (PL) performances of the obtained samples have been investigated. The results showed that a doping with small number of Li+ ions improves the PL intensity of the synthesized La2Ti2O7:Eu3+ nanophosphors. The highest emission intensity was observed using the formula of (La0.92Eu0.05Li0.03)2Ti2O7, whose brightness was increased by almost 20% in comparison with that of (La0.95Eu0.05)2Ti2O7.  相似文献   

11.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

12.
Dielectric ceramics of Zr0.8Sn0.2TiO4 containing La2O3 and ZnO as sintering aids were prepared and investigated for microstructure and microwave dielectric properties. Low-level doping with La2O3 and ZnO (up to 0.30 wt%) is good for densification and dielectric properties. These additives do not affect the dielectric constant and the temperature coefficient. Dielectric losses increase significantly at additive levels higher than 0.15 wt%. The combined additives La2O3 and ZnO act as grain growth enhancers. With 0.15 wt% additives, a ceramic having a dielectric constant, a quality factor, and a temperature coefficient of frequency at 4.2 GHz of 37.6, 12 800, and –2.9 ppm/°C, respectively, was obtained. The quality factor was considerably improved by prolonged sintering.  相似文献   

13.
Extended defects in ZnO ceramics containing, 6 wt% Bi4Ti3O12 were studied by analytical electron microscopy. Apart from basal plane condensation stacking faults, which are also present in as-received ZnO, extended defects related to the presence of Bi4Ti3O12 were observed. In samples sintered at 900°C they lie in the basal or in the prismatic     planes and they quite often form closed loops, whereas they form serpentine-shaped boundaries in samples sintered at 1200°C. Evidence is given that they are inversion boundaries. Their TEM image characteristics, as well as the unambiguous presence of Ti at the boundaries, suggest that they are formed due to the presence of 2-D coherent precipitates of Ti-rich (possibly Zn2TiO4-type spinel) phase.  相似文献   

14.
A novel synthetic method of fine particles of highly pure Li4Ti5O12 with the smallest possible particle size was proposed. A stoichiometric mixture of CH3COOLi·2H2O and anatase fine particles of ca. 50 nm was calcined at 773 K to obtain an intermediate, comprising Li2TiO3 and unreacted titania. The intermediate was then intensively milled by a planetary ball mill for 1 h. After adding an amino acid, glycine, alanine (ALA), or l -phenylalanine (PHE), the mixture was further milled under a milder condition for another 3 h and subjected to a second calcination at 973 K for 1 h to obtain Li4Ti5O12 with a phase purity above 97%. When we used ALA or PHE as an additive, the microscopically determined average particle size of Li4Ti5O12 was 70±10 nm. The mechanisms and significance of the present two-step calcination with mechanical activation and addition of an amino acid to the intermediate were discussed in terms of the topotactic nature of transformation between the two layer-structured species: Li2TiO3 and Li4Ti5O12.  相似文献   

15.
Nanopowders of Bi2Ti2O7 were synthesized by a metallorganic decomposition (MOD) technique. Pure Bi2Ti2O7 nanocrystals formed after annealing at 550°C for 5 min. X-ray patterns show that Bi20TiO32 is a metastable phase during Bi2Ti2O7 formation. It was found that there were two peaks in the curves of the dielectric response as a function of temperature for pressed nanocrystalline Bi2Ti2O7 samples. The Curie temperature decreases with decrease of grain size whereas the ferroelectric-ferroelectric phase transition temperature increases. The hysteresis loops observed also suggest that Bi2Ti2O7 might belong to a ferroelectric material.  相似文献   

16.
A series of La2O3–HfO2–SiO2 glasses, approximately along the join 0.73SiO2–0.27( x HfO2–(1− x )La2O3), 0< x <0.3), was prepared using containerless processing techniques (aerodynamic levitation combined with laser heating in oxygen). The enthalpy of formation and enthalpy of vitrification at 25°C were obtained from drop solution calorimetry of these glasses and appropriate crystalline compounds in a molten lead borate (2PbO–B2O3) solvent at 702°C. The enthalpy of formation from crystalline oxides was exothermic and became less exothermic with increasing HfO2 content. Heat contents were measured by transposed temperature drop calorimetry and depended linearly on the HfO2 content. Differential scanning calorimetry showed that both the onset glass transition and the onset crystallization temperature of these glasses increased with increasing HfO2 content. Upon slow cooling in air, the glasses crystallized to a mixture of baddeleyite, cristobalite, lanthanum disilicate, and hafnon.  相似文献   

17.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

18.
The relationship between the preparation procedure and superconducting properties of La1Ba2Cu3Oy was studied. A series of samples was sintered in an N2-gas atmosphere for various lengths of time ranging from 1 to 40 h, followed by a fixed annealing procedure in O2. It was found that the shorter the sintering period, the higher was the oxygen content. The samples sintered for a period of less than 15 h contained excess oxygen compared with La1Ba2Cu3O7 and exhibited poor superconducting properties. The sample sintered for 40 h had an oxygen content y equal to 6.95, and had excellent superconducting properties. The mechanism for preparing high-quality La1Ba2Cu3Oy is discussed.  相似文献   

19.
Compositions of La1- x Ba x CuO3, where x ranges from 0.0 to 0.5, were fired in air, oxygen-enriched air, and oxygen. Studies show that BaO cannot make a solid solution with LaCuO3 without changing the basic structure. The resulting phases, in all attempts, were the binary compounds La2CuO4, La1- x Ba x CuO3-δ ( x = 0.2 to 0.5), or their mixtures. All samples showed metallic conductivity. Extra oxygen in the reaction atmosphere appeared to encourage the formation of the LaCuO3-based phases of La1- x Ba x CuO3-δ ( x = 0.2 or 0.5). We provide a defect-chemical and thermodynamical explanation for this observation.  相似文献   

20.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号