首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrophorin-2 (NP-2), isolated from salivary glands of the blood-sucking insect Rhodnius prolixus, has been shown to be a specific inhibitor of the intrinsic factor X-(FX)-activating complex. The inhibitory effect of NP-2 is most potent in the presence of both FVIIIa and phospholipids (artificial phospholipid vesicles or activated human platelets). Detailed kinetic analyses of the inhibitory mechanism of NP-2 demonstrated a decrease in both Vmax and K(m) of activated FIX-(FIXa)-catalyzed FX activation in the presence of FVIIIa and phospholipid vesicles, characteristic of a hyperbolic mixed-type reversible inhibitor. NP-2 exhibits a higher binding affinity for the enzyme-substrate complex, i.e., FIXa/FVIIIa/ Ca2+/phospholipids/FX complex (Ki' = 6.2 nM) than for the enzyme complex, i.e., FIXa/FVIIIa/Ca2+/ phospholipids (Ki = 16.5 nM). The same inhibitory kinetic mechanism is valid in platelet-mediated FIXa-catalyzed FX activation (Ki' = 5.9 nM and Ki = 12.6 nM, respectively). The fact that NP-2 increases the concentrations (EC50) of FIXa, FVIIIa, and phospholipid vesicles required for half-maximal rates of FX activation suggests that NP-2 interferes with the functioning of all three major components of the intrinsic FX-activating complex. NP-2 was found to inhibit FX activation when either phospholipids or FVIIIa are present, but not in the absence of both factors. Taken together, we conclude that NP-2 is a unique, potent, and highly specific inhibitor of the intrinsic FX-activating complex that inhibits FIXa bound either to the phospholipid or activated platelet surface or to the cofactor FVIIIa by interfering with the assembly of FX-activating complex on these surfaces.  相似文献   

2.
As a consequence of vessel wall injury, subendothelial matrix and collagen fibers are exposed to the flowing blood. Circulating platelets adhere to these structures and initiate arrest of blood flow. Subendothelial von Willebrand Factor (vWF) plays an important role in mediating platelet adhesion to the injured site, at least in the arterial circulation, characterized by sufficiently elevated shear forces to allow a critical conformation change in vWF, enabling an interaction between the vWF domain A1 and the vWF receptor on the platelet, the GPIb/IX complex. In vitro, in the absence of shear forces, non-physiological mediators are required to induce vWF binding to GPIb. Analysis of the mechanism according to which ristocetin induces vWF binding to GPIb revealed that 2 dimers of ristocetin simultaneously bind to vWF and GPIb, thus forming a quaternary complex in which repulsive negative charges are neutralized by the positively charged ristocetin. The interaction of vWF with its vascular receptor, i.e. collagen VI, which was isolated from human placenta and the extracellular matrix from lung fibroblasts, showed that vWF binds to collagen VI entirely via its A1 domain, i.e. via the domain that binds to GPIb. Also, vWF binding to intact extracellular matrices occurs to matrix associated collagen VI via the vWF A1 domain. By using a combination of 2 specific monoclonal anti-vWF antibodies, it was possible to induce conformational changes in WF that exposed the binding sequences in the A1 domain for GPIb. Thus, in the absence of shear forces, specific vWF binding to GPIb could be induced in the absence of any further mediators. This increased vWF binding to GPIb was sufficient to induce vWF dependent platelet aggregation, although as a consequence of Fc binding to the platelet Fc receptor, platelet activation also occurred via this pathway. Thus, general conformational changes in vWF suffice to expose the relevant amino acid sequences in the A1 domain that enable binding to GPIb. The collagen binding protein calin, isolated from the saliva of the medicinal leech, not only blocks platelet binding to collagen but also inhibited vWF binding. Thus this protein was able to inhibit both the vWF independent and vWF dependent platelet adhesion to various collagens, but much less the platelet binding to endothelial extracellular matrices, that contain matrix anchored vWF. In vivo anti-thrombotic studies in the hamster showed that the vWF antagonist aurin tricarboxylc acid was a more potent inhibitor of arterial thrombosis than of venous thrombosis, confirming the in vivo role of vWF during thrombus formation. Following vessel wall damage and thrombus formation, the neointima that formed in the hamster carotid artery developed more rapidly than in other models, and its formation partially responded to reported inhibitors of restenosis. The combination of cardiovascular drugs with complementary modes of action, such as G4120 (inhibitor of platelet GPIIb/IIIa and smooth muscle cell alpha(v) beta(3)) and quinapril (potent vascular ACE inhibitor) prevented neointima formation to about 70%, i.e. better than with any treatment separately.  相似文献   

3.
Prothrombinase complex assembly, in real time, on platelets adherent to immobilized von Willebrand Factor (vWf) was examined by total internal reflection fluorescence spectroscopy (TIRFS). Electron microscopy showed that the platelets adhered to vWf in a largely unactivated state and could be activated by thrombin. Antibody binding to glycoprotein (GP) Ib and functional GPIIb-IIIa receptor molecules on adherent platelet membranes monitored by TIRFS also indicated that platelets adhered in a largely unactivated state. Maximal expression of the receptor form of GPIIb-IIIa detected by antibody binding was seen only after thrombin stimulation of the adherent platelets. Antibody binding to GPIb was detected on adherent platelets. A reduction in antibody binding was observed after thrombin stimulation of the platelets, indicating a change in GPIb as a consequence of thrombin stimulation of the platelets. The binding of the protein components of the prothrombinase complex to adherent and thrombin-stimulated adherent platelets was then studied individually. Factor Va bound to adherent and thrombin-stimulated adherent platelets was then studied individually. Factor Va bound to adherent and thrombin-stimulated adherent platelets with an estimated Kd of 58 nmol/L. Minimal factor Xa binding was observed on adherent platelets before thrombin stimulation. Factor Xa binding was, however, readily observed on thrombin-stimulated adherent platelets. This factor Xa binding was not saturable, and no Kd value could be estimated. Direct measurement of prothrombinase complex assembly was demonstrated by using an energy transfer phenomenon between fluorescein-labeled factor Va and rhodamine-labeled factor Xa. Prothrombinase complex assembly was observed on both adherent and thrombin-stimulated adherent platelets. The estimated Kd for the factor Va/factor Xa interaction was 4 nmol/L. TIRFS demonstrated that adherent platelets have the ability to support prothrombinase complex assembly, as shown by a direct energy transfer reaction between fluorescently labeled factors Va and Xa.  相似文献   

4.
XV454 demonstrated high potency (IC50 = 14-25 nM) in inhibiting human platelet aggregation induced by adenosine diphosphate (ADP, 10 microM), thrombin receptor agonist peptide (TRAP) (10 microM), or collagen (20 microg/ml). XV454 exhibited a high degree of selectivity for platelet alpha(IIb)beta3 in comparison with c7E3, which is a nonspecific antagonist for both alpha(IIb)beta3 and alpha(v)beta3. Both XV454 and c7E3 bind with high affinity to either activated (A) or unactivated (U) human, baboon, or canine platelets. XV454 binds with a relatively higher affinity [Kd = 0.5 nM (A), 0.6 nM (U)] as compared with c7E3 [Kd = 9.1 nM (A), 9.2 (U) nM]. XV454 demonstrated a tight association with human, baboon, and, to a lesser extent, with canine platelets (t(1/2) of dissociation = 110 +/- 6, 80 +/- 10, and 23 +/- 2 min, respectively). Both c7E3 and XV454 associate tightly with a slower dissociation rate with unactivated human platelets: t(1/2) of 42 and 116 min, respectively. In non-human primates, oral (0.1 mg/kg, p.o.) and intravenous (0.05 mg/kg, i.v. bolus administration of XV454 methyl ester pro-drug resulted a long-lasting maximal antiplatelet efficacy for < or = 72 h with significant but reversible prolongation of bleeding time and without effects on platelet count, clinical chemistry, or hemodynamic profile. In conclusion, XV454 represents a potent antiplatelet agent in inhibiting platelet aggregation along with a high affinity and relatively slow dissociation rate from human platelet GPIIb/IIIa receptors that allow a long-lasting antiplatelet efficacy after single i.v. or oral administration.  相似文献   

5.
The Bernard-Soulier syndrome (BSS) is characterized by thrombocytopenia with giant platelets, a prolonged bleeding time with defective platelet adhesion to the subendothelium related to a defect in platelet membrane glycoprotein Ib (GPIb) and a decreased prothrombin consumption. The mechanism of the latter abnormality remains unknown. In this study, we showed that this defect was corrected by the addition of purified human factor VIII (FVIII) to blood from four patients with BSS. The correction of prothrombin consumption was almost complete at concentrations between 1.5 and 3 IU/ml of FVIII procoagulant activity (VIII:C) and partially abolished by a monoclonal antibody which neutralizes VIII:C. This correction was specific for FVIII and was not observed after addition of purified human FIX. It was obtained, in the same magnitude range, with FVIII complexed to von Willebrand factor (vWF) but not with free vWF. These data provide a new insight into the knowledge of the physiological interaction between the platelet membrane and the vWF-FVIII complex facilitating plasma coagulation activation and may lead to helpful therapeutic advances.  相似文献   

6.
We characterized a murine monoclonal antibody, PT25-2 (IgG1), raised against washed human platelets. The antibody and its Fab fragments were both capable of inducing platelet aggregation in a fibrinogen-dependent manner and induced 125I-fibrinogen binding to unstimulated platelets (120,000 molecules/platelet at a 100 nM IgG concentration). The antibody immunoprecipitated the alpha IIb beta 3 complex from lysates of iodinated platelets but did not react with the respective subunits when complex formation was disrupted by treatment with 5 mM EDTA at 37 degrees C for 30 min. However, simply removing the extracellular divalent cation with EDTA had no effect on antibody binding indicating that the antibody's epitope depends upon a conformational structure maintained by alpha beta subunit association. Antibody binding to unstimulated, washed platelets yielded binding parameters (Kd = 40 nM, Bmax = 100,000 molecules/platelet), which were found to be virtually unchanged when binding was performed using thrombin or RGDS-peptide-stimulated platelets. Thus, the PT25-2 antibody defines a novel regulatory epitope expressed by the alpha IIb beta 3 integrin on unstimulated, quiescent platelets.  相似文献   

7.
We studied the effects of porcine factor VIII (P-FVIII; Hyate:C) and other coagulation products employed in the management of patients with hemophilia A, on platelet activation in vitro. Exposure of normal resting platelets to P-FVIII resulted in platelet activation, as manifested by increased expression of the platelet surface activation markers CD62, CD63, and activated-GPIIbIIIa, and by activation-induced modulation of expression of normal platelet membrane glycoproteins CD41, CD42, and CD36. In contrast, platelet activation was not observed after exposure of the platelets to human FVIII, FEIBA, recombinant FVIIa, or cryosupernatant plasma. As with thrombin, exposure of platelets to P-FVIII resulted in the generation of platelet microparticles, an effect not seen not with the other products. In contrast to the characteristic reduction in expression in the number of CD42 molecules detected on thrombin-activated platelets, P-FVIII-stimulated platelets showed a small increase in CD42 expression. In contrast to thrombin, P-FVIII did not cause platelet dense granule release. The results indicate that therapeutic P-FVIII activates platelets, likely in ways that are different from the platelet activation seen with thrombin. The observed platelet activation and microparticle generation may provide a "hypercoagulable" mechanism for hemostasis with P-FVIII therapy separate from, and additional to, that due to increased circulating FVIII levels.  相似文献   

8.
We recently reported that washed platelets (WP) activated with ADP and expressing surface-bound vWF aggregated in flow through small tubes or in a cylindrical couette device at physiological shear rates of G = 300 s(-1)-1000 s(-1) in the absence of exogenous ligands, with GPIb-vWF partially, and activated GPIIb-IIIa totally required for the aggregation. We have now extended these studies to aggregation of platelets "activated" with ristocetin or thrombin. Washed platelet suspensions with added soluble vWF and ristocetin (0.3-0.75 mg/ml), or activated with thrombin (0.01-0.5 U/ml) but no added ligand, were sheared in a coaxial cylinder device at uniform shear rate, G = 1000 s(-1). The collision capture efficiency (alphaG) with which small aggregates form (= experimental/calculated initial rates of aggregation) was correlated with vWF platelet binding assessed by flow cytometry. The vWF-GPIb interaction was exclusively able to support ristocetin-mediated shear aggregation of metabolically active platelets, with very few vWF monomer equivalents bound per platelet (representing < or = 10 molecules of 10 million Da) required to yield high capture efficiencies (alphaG = 0.38+/-.02; n = 11), suggesting rapid and stable bond formations between vWF and GPIb. However, platelet surface-expressed vWF, generated by addition of thrombin to washed platelets, was found to mediate platelet aggregation with alphaG = 0.08+/-.01 (n = 6), surprisingly comparable to that previously reported for WP and ADP activation. Blocking the GPIIb-Illa receptor decreased alphaG by 95+/-3% (n =3), while a monoclonal antibody to the vWF site on GPIb caused a 49+/-7% (n = 8) decrease in alphaG. The partial role for GPIb thus appears to reflect a facilitative function for increasing contact time between flowing platelets, and allowing engagement of the GPIIb-IIa receptor to yield stable attachment.  相似文献   

9.
Shear-induced platelet aggregation (SIPA) involves von Willebrand Factor (vWF) binding to platelet glycoprotein (GP)Ib at high shear stress, followed by the activation of alphaIIb beta3. The purpose of this study was to determine the vWF sequences involved in SIPA by using monoclonal antibodies (MoAbs) to vWF known to interfere with its binding to GPIb and to alphaIIb beta3. Washed platelets were exposed to shear rates between 100 and 4,000 seconds-1 in a rotational viscometer. SIPA was quantitated by flow cytometry as the disappearance of single platelets (DSP) in the sheared sample in the presence of vWF, relative to a control in the absence of shear and vWF. At a shear rate of 4,000 seconds-1, DSP was increased from 5.9% +/- 3.5% in the absence of vWF to 32.7% +/- 6.3% in the presence of vWF. This increase in SIPA was not associated with an elevation of P-selectin expression. vWF-dependent SIPA was completely abolished by MoAb 6D1 to GPIb and partially inhibited by MoAb 10E5 to alphaIIb beta3. Three MoAbs to vWF were compared for their effect on SIPA at 4,000 seconds-1 in the presence of vWF: MoAb 328, known to block vWF binding to GPIb in the presence of ristocetin, MoAb 724 blocking vWF binding to GPIb in the presence of botrocetin, and MoAb 9, an inhibitor of vWF binding to alphaIIbbeta3. Similar to the effect of MoAb 6D1, MoAb 328 completely inhibited the effect of vWF, whereas MoAb 9 had a partial inhibitory effect, as MoAb 10E5 did. In contrast, MoAb 724, as well as its F(ab')2 fragments, promoted shear-dependent platelet aggregation (165% of the DSP value obtained in the absence of MoAb 724), indicating that MoAb 724 was responsible for an enhanced aggregation, which was independent of binding to the platelet Fcgamma receptor. In addition, the enhancement of aggregation induced by MoAb 724 was abrogated by MoAb 6D1 or 10E5 to the level of SIPA obtained in the presence of vWF incubated with a control MoAb to vWF. Finally, the activating effect of MoAb 724 was also found under static conditions at ristocetin concentrations too low to induce platelet aggregation. Our results suggested that on binding to a botrocetin-binding site on vWF, MoAb 724 mimics the effect of botrocetin by inducing an active conformation of vWF that is more sensitive to shear stress or to low ristocetin concentration.  相似文献   

10.
Factor VIII (FVIII) and factor V (FV) are homologous coagulation cofactors sharing a similar domain organization (A1-A2-B-A3-C1-C2) and are both extensively glycosylated within their B-domains. In mammalian cell expression systems, compared with FV, the FVIII primary translation product is inefficiently transported out of the endoplasmic reticulum. Here we show that FVIII is degraded within the cell by a lactacystin-inhibitable pathway, implicating the cytosolic 20 S proteasome machinery. Protein chaperones calnexin (CNX) and calreticulin (CRT) preferentially interact with glycoproteins containing monoglucosylated N-linked oligosaccharides and are proposed to traffic proteins through degradative and/or secretory pathways. Utilizing co-immunoprecipitation assays, intracellular FVIII was detected in association with CNX maximally within 30 min to 1 h following synthesis, whereas FV could not be detected in association with CNX. In contrast, both FVIII and FV displayed interaction with CRT during transit through the secretory pathway. B-domain deleted FVIII significantly reduced the CNX and CRT interaction, indicating the B-domain may represent a primary CNX and CRT interaction site. In the presence of inhibitors of glucose trimming, the interactions of FVIII with CNX, and of FVIII and FV with CRT, were significantly reduced whereas the secretion of FVIII, and not FV, was inhibited. In addition, transfection in a glucosidase I-deficient Chinese hamster ovary cell line (Lec23) demonstrated that both degradation and secretion of FVIII were inhibited, with little effect on the secretion of FV. These results support that CNX and CRT binding, mediated at least in part by the B-domain of FVIII, is required for efficient FVIII degradation and secretion. In contrast, FV does not require CNX interaction for efficient secretion. The results suggest a unique requirement for carbohydrate processing and molecular chaperone interactions that may limit the productive secretion of FVIII.  相似文献   

11.
Adhesion between platelets and polymorphonuclear leukocytes (PMN) is a key event in thrombosis and inflammation. Double color fluorescence-activated cell sorter (FACS) analysis was used to determine the extent and kinetics of adhesion of thrombin-activated platelets to resting or activated PMN when mixed cell populations were incubated in dynamic conditions. Activated platelets bound very rapidly to PMN. Mixed cell conjugates reached a maximum at 1 minute and were reversible within 10 minutes. Platelet/PMN adhesion required both Ca2+ and Mg2+ and was markedly increased by the presence of Mn2+. The latter made mixed cell conjugates stable up to 10 minutes. Adhesion of platelets required metabolic activity of PMN and was abolished by tyrosine kinase inhibitors. Furthermore, adhesion of platelets to PMN resulted in binding of a monoclonal antibody (MoAb 24) known as beta 2 integrins "activation reporter." When PMN were activated by exogenous stimuli, the adhesion of platelets was markedly increased: fMLP induced a rapid and transient effect, while PMA resulted in a slower, but stable, increase in mixed conjugates formation. The hypothesis that activated PMN beta 2 integrins are able to bind a counter-receptor on platelets was directly demonstrated by the increase of mixed cell conjugates following PMN treatment with KIM127 and KIM185, two anti-CD18 antibodies able to induce the active conformation of beta 2 integrins. Consistently, two other anti-CD18, as well as an anti-CD11b inhibitory antibody abolished platelet/PMN adhesion. PMN beta 2 integrin activation was not the only mechanism for activated platelet/PMN adhesion to occur: indeed, this phenomenon could also be inhibited by two anti-P-selectin antibodies. Resting platelets did not adhere to resting PMN, but markedly adhered to fMLP- or PMA-activated PMN. Resting platelet/fMLP-activated PMN adhesion was abolished by anti-CD18 antibodies, but not by anti-P-selectin antibodies. In conclusion, activated platelet/PMN interaction can be modeled as an adhesion cascade involving a P-selectin-dependent recognition step and a functional signal. The latter proceeds through tyrosine kinase activation and enables a beta 2 integrin-dependent adhesion to a not yet identified counter-receptor constitutively expressed on platelet surface.  相似文献   

12.
Mural thrombi form on exposed arterial subendothelium by a two-step process of platelet adhesion and aggregation. At high shear stresses such as are found in stenotic arteries, both steps are mediated by von Willebrand factor (vWF). Platelets initially adhere on vWF affixed to the subendothelial matrix through the glycoprotein (GP) Ib-IX-V complex. To examine the role of the GP Ib-IX-V complex under dynamic conditions, we modeled initial platelet adhesion at shear stresses ranging from 2 to 40 dyn/cm2 using vWF-coated glass slides, mammalian cells expressing full or partial GP Ib-IX-V complexes, and a parallel plate flow chamber with phase contrast video microscopy and digital image processing. Mammalian cells expressing the full complex tethered and rolled on the vWF substrate, whereas control cells did not. The rolling was completely inhibited by the monoclonal GP Ib antibody, AK2, or the vWF antibody, 5D2, both shown previously to block vWF-dependent platelet aggregation. Other GP Ib antibodies, WM23 and SZ2, did not significantly change the number or mean velocity of rolling cells. At low levels of GP Ib surface expression, cells expressing the full complex rolled slower than cells expressing the complex without GP V, indicating that GP V strengthens the interactions with the vWF surface under these conditions. Preshearing vWF for 5 minutes at 40 dyn/cm2 immediately before introducing cells into the chamber did not significantly change the number or the mean velocity of rolling cells. Inhibiting sulfation of the tyrosine residues within the GP Ib subunit reduced the number but did not change the mean velocity of the rolling cells. Our results indicate that, under the conditions of these experiments, bonds between vWF and GP Ib constantly form and break under fluid shear stress. Additionally, our results suggest that GP Ib-IX-V complexes behave like selectin receptors in their ability to mediate smooth rolling while cells maintain continuous surface contact. Such a mechanism, in vivo, would allow platelets to slow down and eventually arrest on the blood vessel wall. The system described provides a valuable approach for investigating the structure-function relationship of individual receptors and ligands in the process of platelet adhesion and thrombosis.  相似文献   

13.
This report describes the expression, purification, and characterization of a series of recombinant factor Xa variants bearing aspartate substitutions for each of the glutamate residues which normally undergo gamma-carboxylation. Factor X was expressed in human embryonic kidney cells and purified from conditioned media by immunoaffinity and hydroxylapatite chromatography. Factor X was activated with Russell's viper venom factor X activator, and single-chain unactivated factor X was removed from activated factor X by size-exclusion chromatography. Recombinant wild-type factor Xa had normal activity in a clotting assay, and mutants with aspartate substitutions for glas residues 16, 26, and 29 had no detectable clotting activity. In purified component assays, these gla variants had essentially no detectable activity in the prothrombinase complex assembled on synthetic phospholipid vesicles but had significant activity when the prothrombinase was assembled on thrombin-activated platelets. In addition, the gla 32 variant had normal activity in the platelet prothrombinase but diminished activity in prothrombinase assembled on synthetic PSPC vesicles. These differences were not accounted for by the total phospholipid composition of the thrombin-activated platelet membrane. We have produced fully active recombinant human factor Xa and demonstrated that gla residues 16, 26, and 29 are critical for normal activity of factor Xa. More importantly, this study provides an extensive characterization of macromolecular enzyme complex formation with gla variants of a vitamin K-dependent coagulation protein and provides evidence that prothrombinase complex assembly on thrombin-activated platelets is not equivalent to assembly on synthetic phospholipid vesicles. The data suggest that thrombin-activated platelets possess some element(s) (other than 30% phosphatidyl serine or factor Va), presumably either protein or phospholipid, that serves as a component of the factor Xa binding site.  相似文献   

14.
The distribution and organization of von Willebrand factor (vWF) multimers on platelets after surface activation have not been fully characterized. In the present study, washed human platelets were allowed to interact with Formvar-coated, electron microscope grids for 20 minutes at 37 degrees C and then fixed. After fixation, cells were washed and then incubated with buffer alone, human plasma, human plasma preincubated with ristocetin (1.2 mg/mL), purified human vWF plus ristocetin, or bovine plasma. Macromolecular complexes were revealed by ultrastructural immunocytochemistry employing a polyclonal antibody against vWF and protein A-gold (PAG) as the electron-dense probe. vWF multimers were not present in discoid platelets but appeared on the central zone of dendritic cells and over larger central areas of fully spread platelets. Exposure to human plasma alone did not affect the distribution of electron-dense probes for vWF in central regions of surface-activated cells. Incubation of spread platelets with ristocetin-activated human plasma or bovine plasma resulted in the appearance of randomly dispersed, mottled areas of increased density covering the surface from edge to edge. Exposure to vWF antibody and PAG resulted in specific labeling of the dense areas in a serpentine, linear array. The gold-probe distribution suggested that the vWF multimers were not superimposed and were distributed in a random, irregular manner from edge to edge with label-free, clear areas between them. The results extend previous observations demonstrating that glycoprotein Ib-IX receptors are not spontaneously cleared from the plasma membranes of surface-activated platelets by showing that the receptor function of glycoprotein Ib-IX complex remains unchanged.  相似文献   

15.
The interaction between von Willebrand factor (vWF) A1 domain and platelet glycoprotein Ib alpha occurs in the presence of high shear stress or when vWF becomes immobilized onto a surface but not appreciably in the normal circulation. To investigate the structural properties regulating A1 domain function, we have used recombinant fragments prepared either in cyclic form with oxidized Cys509-Cys695 disulfide bond or reduced and alkylated. Interaction with glycoprotein Ibalpha was assessed by testing inhibition of monoclonal antibody LJ-Ib1 binding to platelets and inhibition of shear-induced platelet aggregation mediated by native vWF. Fragments exposed to pH between 2.5 and 3.5 adopted the molten globule conformation with loosened tertiary structure intermediate between native and completely unordered state. Maximal receptor binding activity was observed when fragments kept at acidic pH, particularly after reduction of the Cys509-Cys695 disulfide bond, were subjected to quick refolding by rapid pH increase. In contrast, slow refolding by incremental pH change over several hours resulted in at least 20-fold lower activity. A specific single point mutation (I546V) resulted in enhanced receptor binding, whereas another mutation (S561G) caused markedly reduced binding. These results provide experimental evidence that conformational transitions can modulate function of the vWF A1 domain in solution.  相似文献   

16.
17.
In type 2N von Willebrand disease (vWD), von Willebrand factor (vWF) is characterized by normal multimeric pattern, normal platelet-dependent function, but a markedly decreased affinity for factor VIII (FVIII). In this report, we describe the case of a vWD patient who has an abnormal vWF multimers distribution associated with a markedly decreased vWF ability to bind FVIII. Sequencing analysis of patient's vWF gene showed, at heterozygous state, a G-->A transition resulting in the substitution of Asn for Asp at position 116 of the mature vWF subunit and a C-->T transition, changing the codon for Arg 896 into a stop codon. His sister who has a subnormal vWF level, but a normal FVIII/vWF interaction, was found to be heterozygous for the Arg896ter mutation only. Recombinant vWF (rvWF) containing the candidate (Asn116) missense mutation was expressed in COS-7 cells. The expression level of Asn116rvWF was significantly decreased compared with wild-type rvWF. The multimeric pattern of Asn116rvWF was greatly impaired as shown by the decrease in high molecular weight forms. The FVIII binding ability of Asn116rvWF was dramatically decreased. These data show that the Asp116Asn substitution is the cause of both the defective FVIII/vWF interaction and the impaired multimeric pattern observed in the patient's vWF. The monoclonal antibody 31H3 against D' domain of vWF (epitope aa 66-76) that partially inhibits the FVIII binding and recognizes only nonreduced vWF, showed a decreased ability to bind Asn116rvWF when used as capture-antibody in enzyme-linked immunosorbent assay (ELISA). This result suggests that a potential conformation change in the D' domain is induced by the Asp116Asn substitution, which is localized in the D3 domain.  相似文献   

18.
Glycoprotein (GP) Ib is an adhesion receptor on the platelet surface that binds to von Willebrand Factor (vWF). vWF becomes attached to collagens and other adhesive proteins that become exposed when the vessel wall is damaged. Several investigators have shown that during cardiopulmonary bypass (CPB) surgery and also during platelet activation in vitro by thrombin or thrombin receptor activating peptide (TRAP) GPIb disappears from the platelet surface. Such a disappearance is presumed to lead to a decreased adhesive capacity. In the present study, we show that a 65% decrease in platelet surface expression of GPIb, due to stimulation of platelets in Orgaran anticoagulated whole blood with 15 micromol/L TRAP, had no effect on platelet adhesion to both collagen type III and the extracellular matrix (ECM) of human umbilical vein endothelial cells under flow conditions in a single-pass perfusion system. In contrast to adhesion, ristocetin-induced platelet agglutination was highly dependent on the presence of GPIb. Immunoelectron microscopic studies showed that GPIb almost immediately returned to the platelet surface once platelets had attached to collagen. In a subsequent series of experiments, we showed that when less than 50% of GPIb was blocked by an inhibitory monoclonal antibody against GPIb (6D1), platelet adhesion under flow conditions remained unaffected.  相似文献   

19.
Platelet factor 4 (PF4) is an abundant platelet alpha-granule heparin-binding protein. We have previously shown that PF4 accelerates up to 25-fold the proteolytic conversion of protein C to activated protein C by the thrombin.thrombomodulin complex by increasing its affinity for protein C 30-fold. This stimulatory effect requires presence of the gamma-carboxyglutamic acid (Gla) domain in protein C and is enhanced by the presence of a chondroitin sulfate glycosaminoglycan (GAG) domain on thrombomodulin. We hypothesized that cationic PF4 binds to both protein C and thrombomodulin through these anionic domains. Qualitative SDS-polyacrylamide gel electrophoresis analysis of avidin extracts of solutions containing biotinylated PF4 and candidate ligands shows that PF4 binds to GAG+ but not GAG- forms of thrombomodulin and native but not Gla-domainless protein C. Quantitative analysis using the surface plasmon resonance-based BIAcoreTM biosensor system confirms the extremely high affinity of PF4 for heparin (KD = 4 nM) and shows that PF4 binds to GAG+ thrombomodulin with a KD of 31 nM and to protein C with a KD of 0.37 microM. In contrast, PF4 had no measurable interaction with GAG- thrombomodulin or Gla-domainless protein C. Western blot analysis of normal human plasma extracted with biotinylated PF4 demonstrates PF4 binding to protein C in a physiologic context. Thus, PF4 binds with relative specificity and high affinity to the GAG- domain of thrombomodulin and the Gla domain of protein C. These interactions may enhance the affinity of the thrombin.thrombomodulin complex for protein C and thereby promote the generation of activated protein C.  相似文献   

20.
Type IIB von Willebrand disease (vWD) is characterized by a selective loss of high molecular weight von Willebrand factor (vWF) multimers in plasma due to their abnormally enhanced reactivity with platelets. Several missense mutations in the platelet glycoprotein Ib (GPIb) binding domain of vWF were recently characterized that cause type IIB vWD. The effect of type IIB mutation Arg(545)Cys on vWF binding to platelet GPIb was studied using recombinant wild type (rvWFWT) and mutant rvWFR545C expressed in COS-7 cells. In the absence of ristocetin, 50% of rvWFR545C bound spontaneously to platelet GPIb and the binding increased to 70% in the presence of 0.2 mg/ml ristocetin; rvWFWT did not bind significantly under either condition. Botrocetin-induced binding of rvWFR545C was only slightly increased compared to rvWFWT. These data demonstrate that the Arg(545)Cys mutation increases the affinity of vWF for GPIb, resulting in the characteristics gain-of-function type IIB vWD phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号