首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strength Characteristics of Class F Fly Ash Modified with Lime and Gypsum   总被引:3,自引:0,他引:3  
This paper presents the shear strength characteristics of a low lime class F fly ash modified with lime alone or in combination with gypsum. Unconfined compression tests were conducted for both unsoaked and soaked specimens cured up to 90 days. Addition of a small percentage of gypsum (0.5 and 1.0%) along with lime (4–10%) enhanced the shear strength of modified fly ash within short curing periods (7 and 28 days). The gain in unsoaked unconfined compressive strength (qu) of the fly ash was 2,853 and 3,567% at 28 and 90 days curing, respectively, for addition of 10% lime along with 1% gypsum to the fly ash. The effect of 24?h soaking showed reduction of qu varying from 30 to 2% depending on mix proportions and curing period. Unconsolidated undrained triaxial tests with pore-pressure measurements were conducted for 7 and 28 days cured specimens. The cohesion of the Class F fly ash increased up to 3,150% with addition of 10% lime along with 1% gypsum to the fly ash and cured for 28 days. The modified fly ash shows the values of Skempton’s pore-pressure parameter, Af similar to that of over consolidated soils. The effects of lime content, gypsum content, and curing period on the shear strength parameters of the fly ash are highlighted herein. Empirical relationships are proposed to estimate the design parameters like deviatoric stress at failure, and cohesion of the modified fly ash. Thus, this modified fly ash with considerable shear strength may find potential use in civil engineering construction fields.  相似文献   

2.
Civil engineers are at times required to stabilize sulfate-bearing clay soils with calcium-based stabilizers. Deleterious heaving in these stabilized soils may result over time. This paper addresses critical questions regarding the consequences of treating sulfate laden soils with calcium-based stabilizers. The authors describe the nature (chemistry and structure) of the minerals (ettringite/thaumasite) blamed for deleterious reactions and explain why these structures may lead to damage. The writers also describe the mechanisms of the mineral growth, and the extent of mineral growth based on the amount of sulfate minerals present in the soil. The writers explain why the rate of ettringite growth in treated soils should not be expected to follow a controlled rate of ettringite development such as that which normally occurs in portland cement concrete. The writers compare the rate and degree of ettringite development in soils to the classical model of nucleation and growth typical of most crystal structures. Finally, the writers evaluate the role of soil mineralogy in controlling soil behavior at varying sulfate contents and verify the existence of a threshold level of soluble sulfates in soils that can trigger substantial ettringite growth.  相似文献   

3.
Stabilization of Organic Soils with Fly Ash   总被引:4,自引:0,他引:4  
The effectiveness of fly ash use in the stabilization of organic soils and the factors that are likely to affect the degree of stabilization were studied. Unconfined compression and resilient modulus tests were conducted on organic soil–fly ash mixtures and untreated soil specimens. The unconfined compressive strength of organic soils can be increased using fly ash, but the amount of increase depends on the type of soil and characteristics of the fly ash. Resilient moduli of the slightly organic and organic soils can also be significantly improved. The increases in strength and stiffness are attributed primarily to cementing caused by pozzolanic reactions, although the reduction in water content resulting from the addition of dry fly ash solid also contributes to strength gain. The pozzolonic effect appears to diminish as the water content decreases. The significant characteristics of fly ash that affect the increase in unconfined compressive strength and resilient modulus include CaO content and CaO/SiO2 ratio [or CaO/(SiO2+Al2O3) ratio]. Soil organic content is a detrimental characteristic for stabilization. Increase in organic content of soil indicates that strength of the soil–fly ash mixture decreases exponentially. For most of the soil–fly ash mixtures tested, unconfined compressive strength and resilient modulus increased when fly ash percentage was increased.  相似文献   

4.
Soil-Water Characteristic Curves of Stabilized Expansive Soils   总被引:2,自引:0,他引:2  
The engineering properties of expansive soils are conventionally improved through the use of additives such as fly ash, lime, and chemical additives. Such soils are often referred to as stabilized or modified or treated expansive soils. The soil-water characteristic curves (SWCC) of two expansive soils from Texas were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-1,000 kPa. The SWCC results are used to interpret the expansive soil behavior due to stabilizer treatment. In addition, relationships were developed between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, and stabilizer dosages and the model constants of the SWCC formulation of Fredlund and Xing via multiple linear regression analysis. The analysis showed that higher coefficients of correlations can be achieved by using six independent soil properties. The comparisons between the predicted and measured volumetric water contents are within ±20% for ash-treated expansive soils, and within ±15% for combined ash- and fiber-treated expansive soils. The research data and interpretation analysis presented here can be extended to understand volume change behaviors of other stabilized expansive soils using the SWCC test data.  相似文献   

5.
This research was aimed at recovering Fe and Al compounds to produce a useful complex coagulant from fly ash using H2SO4 and SO2 from flue gas oxidized to SO3 by NaClO3. The reaction kinetics of wet SO2 scrubbing from simulated flue gas with fly ash slurry was studied. The SO2 scrubbing experiments were carried out in a jacketed glass reactor system with a simulated flue gas containing SO2 and N2 in the gas phase and fly ash slurry in the liquid phase. Sodium chlorate was added to oxidize SO2 to SO3, adding H2SO4 in the slurry. The reaction orders of both Fe2O3 and Al2O3 extraction from fly ash slurry were shown to be 1.5. The empirical Arrhenius expressions were also derived from the reaction rate constants obtained at each reaction temperature. The mass transfer process of SO2 with ClO3? was evaluated using a two-film theory model.  相似文献   

6.
Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.  相似文献   

7.
Lime treatment is an attractive technique for soil improvement in the construction of rail tracks and pavement layers, in slope protection of earth dams, and as a support layer for shallow foundations. However, there are no dosage methodologies based on rational criteria as in the case of soil-cement technology, where the voids/cement ratio is shown to be a key parameter for the estimation of both strength and stiffness. The present study, therefore, was aimed at quantifying the influence of the amount of lime, porosity, and voids/lime ratio on the initial shear modulus (G0) and unconfined compressive strength (qu) of a lime-treated clayey sandy soil. From the results of unconfined compression tests and bender elements measurements, it was shown, for the soil-lime mixtures investigated, that the voids/lime ratio is an appropriate parameter to assess both initial stiffness and unconfined compressive strength. Also, a unique G0/qu versus voids/lime ratio relationship was established linking the soil-lime mixture initial stiffness and compressive strength.  相似文献   

8.
Effect of Fly Ash on Engineering Properties of Expansive Soils   总被引:8,自引:0,他引:8  
This note presents a study of the efficacy of fly ash as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil. The plasticity, hydraulic conductivity and swelling properties of the blends decreased and the dry unit weight and strength increased with an increase in fly ash content. The resistance to penetration of the blends increased significantly with an increase in fly ash content for a given water content. Excellent correlation was obtained between the measured and predicted undrained shear strengths.  相似文献   

9.
常压石灰法处理拜尔法赤泥的研究   总被引:1,自引:0,他引:1  
采用正交法对影响常压石灰法处理拜尔法赤泥的因素进行研究,结果表明:在CaOf/Na2O赤3 5~4 5、90~95℃、液固比(L/S)3 5~4 0、3~4h条件下,拜尔法赤泥的N/S可由反应前的0 5降到0 2以下,完全满足赤泥直接排放要求。  相似文献   

10.
Dynamic Compaction of Collapsible Soils Based on U.S. Case Histories   总被引:1,自引:0,他引:1  
Dynamic compaction (DC) is an economical approach for mitigating the hazard posed by collapsible soils particularly when they are deeper than 3–4 m. In this paper, case histories are provided for 15 projects at 10 locations in the United States where collapsible soils were treated with DC. For each site the soil properties, compaction procedures, and subsequent improvement are summarized. Although cohesionless and low-plasticity collapsible soils were successfully compacted, clay layers in the profile appeared to absorb energy and severely reduced compaction effectiveness. Correlations are presented for estimating the maximum depth of improvement, the degree of improvement versus depth, the depth of craters, and the level of vibration based on measurements made at the various sites. The compactive energy per volume was typically higher than for noncollapsible soils because collapsible soils are usually loose but relatively stiff. The maximum depth of improvement was similar to that for noncollapsible soils; however, significant scatter was observed about the best-fit line. Improvement was nonuniform with nearly 80% of the total improvement occurring within the top 60% of the improvement zone. The crater depth was related to a number of factors besides the drop energy including the number of drops, drop spacing, and contact pressure. The peak particle velocities were typically lower than those for noncollapsible soils at shorter distances, but the vibrations attenuated more slowly with distance.  相似文献   

11.
In this study, microcosm experiments were conducted to evaluate the effectiveness of (1) nutrients, hydrogen peroxide (H2O2), and cane molasses addition; (2) soil washing by biodegradable surfactant [Simple Green (SG)]; and (3) soil pretreatment by Fenton-like oxidation on the bioremediation of fuel-oil contaminated soils. The dominant native microorganisms in the fuel-oil contaminated soils after each treatment process were determined via polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis. Results show that approximately 32 and 56% of total petroleum hydrocarbon (TPH) removal (initial concentration of 5,000?mg?kg?1) were observed in microcosms with the addition of nutrient and cane molasses (1,000?mg?L?1), respectively, compared to only 9% of TPH removal in live control microcosms under intrinsic conditions (without amendment) after 120 days of incubation. Addition of cane molasses would cause the increase in microbial population and thus enhance the TPH degradation rate. Results also show that approximately 61% of TPH removal was observed in microcosms with the addition of H2O2(100?mg?L?1) and nutrient after 120 days of incubation. This indicates that the addition of low concentration of H2O2(100?mg?L?1) would cause the desorption of TPH from soil particles and increase the dissolved oxygen and subsequent bioremediation efficiency in microcosms. Approximately 95 and 69% of TPH removal were observed in microcosms with SG (100?mg?L?1) and higher dose of H2O2(900?mg?L?1) addition, respectively. Moreover, significant increases in microbial populations were observed and two TPH biodegraders (Pseudomonas sp. and Shewanella sp.) might exist in microcosms with SG or H2O2 addition. This indicates that the commonly used soil remedial techniques, biodegradable surfactant flushing, and Fenton-like oxidation would improve the TPH removal efficiency and would not cause adverse effects on the following bioremediation process.  相似文献   

12.
The construction of Fort Peck Dam in the 1930s on the Missouri River, eastern Montana, initiated a series of changes in hydrologic conditions and channel morphology downstream from the dam that impacted channel stability. Impacts included streambed degradation of up to 3.6 m and substantially altered magnitude, frequency, and temporal distribution of flows. To investigate the effects of the altered flow regime and bed degradation on bank stability, two independent bank-stability analyses (one for planar failures, the other for rotational failures) were performed on 17 outside meanders. Both included the effects of matric suction and positive pore-water pressures, confining pressures, and layering. Instability occurred from the loss of matric suction and the generation of positive pore-water pressures. In this semiarid region, such hydrologic conditions are most likely to occur from the maintenance of moderate and high flows (greater than 425–566 m3/s) for extended periods (5–10 days or more), thereby providing a mechanism for saturation of the streambank. For the postdam period, average annual frequencies of flows maintained above 566 m3/s for 5- and 10-day durations are 149 and 257% greater, respectively. The analyses indicated that 30% of the sites were susceptible to planar failures while 53% of the sites were susceptible to rotational failures under sustained moderate- and high-flow conditions, while under a worst-case rapid drawdown scenario, 80% of the banks were susceptible to failure. Despite the negative effects of the altered flow regime, analysis of maps and aerial photographs shows that closure of Fort Peck Dam has resulted in a fourfold reduction of the average rate of long-term channel migration between the dam and the North Dakota border.  相似文献   

13.
This paper presents a case study of a U-shaped, courtyard house damaged by expansive soils. The field investigation revealed that the damage was caused by edge heaving as a result of water ponding in the courtyard. A back-analysis procedure using finite-element analysis is presented that is based on the measured slab surface levels. The back-analysis provides a representation of the underlying ground movement. The results of the back-analysis compared reasonably well with the actual observations in the field. It was deduced that the slab cracking could have been prevented and the distortion of the house would have been significantly reduced if a strap beam had been added in the courtyard area.  相似文献   

14.
The objective of this study was to assess the potential of applying enhanced bioremediation on the treatment of petroleum-hydrocarbon contaminated soils. Microcosm experiments were conducted to determine the optimal biodegradation conditions. The control factors included oxygen content, nutrient addition, addition of commercially available mixed microbial inocula, addition of wood chip and rice husk mixtures (volume ratio = 1:1) as bulking agents, and addition of organic amendments (chicken manures). Results indicate that the supplement of microbial inocula or chicken manures could significantly increase the microbial populations in soils, and thus enhance the efficiency of total petroleum hydrocarbon (TPH) removal (initial TPH = 5,500?mg/kg). The highest first-order TPH decay rate and removal ratio were approximately 0.015?day?1 and 85%, respectively, observed in microcosms containing microbial inocula (mass ratio of soil to inocula = 50:1), nutrient, and bulking agent (volume ratio of soil to bulking agent = 10 to 1) during 155 days of incubation. Results indicate that the first-order TPH decay rates of 0.015 and 0.0142?day?1 can be obtained with the addition of microbial inocula and chicken manures, respectively, compared with the decay rate of 0.0069?day?1 under intrinsic conditions. Thus, chicken manures have the potential to be used as substitutes of commercial microbial inocula. The decay rate and removal ratio can be further enhanced to 0.0196?day?1 and 87%, respectively, with frequent soil shaking and air replacement. Results will be useful in designing an ex situ soil bioremediation systems (e.g., biopile and land farming) for practical application.  相似文献   

15.
This paper presents the development and validation of a numerical model for simulation of the flow of water and air and contaminant transport through unsaturated soils. The governing differential equations include two mass balance equations for the water phase and air phase together with a balance equation for contaminant transport through the two phases. In the model the nonlinear system of the governing differential equations was solved using a finite-element method in the space domain and a finite difference scheme in the time domain. The governing equation of the miscible contaminant transport including advection, dispersion-diffusion and adsorption effects are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to standard experiments on contaminant transport in unsaturated soils. The application of the model to a case study is then presented and discussed. Finally, the merits and limitations of the model are highlighted.  相似文献   

16.
Nonlinearity of the soil medium plays a very important role on the seismic behavior of soil-pile-structure interaction. The problem of soil-pile-structure interaction is further complicated when the piles are embedded in liquefiable soil medium. A finite-element code was developed in MATLAB to model three-dimensional soil-pile-structure systems. Frequency dependent Kelvin elements (spring and dashpots) were used to model the radiation boundary conditions. A work-hardening plastic cap model was used for constitutive modeling of the soil medium. The pore pressure generation for liquefaction was incorporated by a two-parameter volume change model reported in the literature. In this paper, a 2×2 pile group in liquefiable soil is considered and a parametric study is conducted to investigate its seismic behavior. The effects of loading intensity and stiffness of the soil on the seismic behaviour of the soil-pile system are investigated, considering nonlinearity and liquefaction of the soil medium for a wide range of frequencies of harmonic excitations. The inertial interaction attributable to a structure is analyzed for a system consisting of a four-storied portal frame on the pile group-soil subsystem. The responses of the structure are investigated for harmonic excitation and transient excitations. The importance of consideration of nonlinearity and liquefaction of the soil medium for analysis and design of a pile-supported structure is highlighted. Results from an analysis considering a practical soil-pile problem are presented to demonstrate the applicability of the developed algorithm for a practical problem.  相似文献   

17.
对于矿山地下深部开采存在的地压问题,选取3组料浆浓度充填试件在RMT-150C压力机上经过不同围压三轴压缩后再进行单轴压缩试验,获得经过3组围压压缩后不同料浆浓度试件的应力—应变曲线数据,并结合Lemaitre应变等价原理,得到全尾砂胶结充填体的峰前后损伤值公式和损伤本构方程。从损伤—应变曲线可知:当料浆浓度一定时,增大围压,充填体弹性变形阶段缩短,更早达到屈服极限且峰值损伤值增大,继续增大围压,充填材料峰值损伤值降低;在低围压条件下,增大料浆浓度抑制了峰前损伤增长,但促进峰后损伤增长;在高围压条件下,随着料浆浓度的增大,充填材料损伤值先降低后升高,促进了试件破坏。  相似文献   

18.
A study on the hydraulic and sediment conditions at the Tacoma Narrows Bridge, in Washington State, was carried out to examine the stability of the bed material around the bridge caissons. Specifically, this was conducted around the east caisson, where the maximum velocities around either of the two caissons are experienced. This was performed for the peak tidal exchange event of May 27th to 28th, 2002. During this max flow event, multibeam surveyed bathymetry and three-dimensional acoustic doppler current profiler velocity data were collected around the east caisson in the course of both the flood and ebb. The surface of the bed material surrounding the east caisson was videotaped during the slack conditions following the yearly maximum flow event, and used to determine the particle size distribution and spatial arrangement of those distributions around the caisson. This was done by lowering a submersible video camera and appropriate lighting to the bottom of the Narrows, a depth of approximately 45?m. Flow and sediment observations were coupled to determine the commencement of sediment motion for different size classes of sediment. Two methods were utilized to calculate friction velocity in order to assess the stability of different bed particle size fractions during these high flow conditions. Friction velocity was first calculated from measured velocity profiles at various locations around the east caisson. The second method was based on the concept of a free stream power-law expression for depth-averaged velocity. Stability was then examined using the critical shear stress concept and captured video data of the bed. General results showed the particles ? 30?mm in diameter were in motion during the flood and ebb. The work is here presented as a case study because of the unique large-scale flow conditions that are present around the east caisson of the Tacoma Narrows Bridge.  相似文献   

19.
Settlement and formation of piping holes on surfaces were observed along a rail embankment subject to normal traffic load. Piezometers were installed in the native peat and soil underneath the embankment inside and outside problematic area to measure the pore pressure responses during train traffic. Peculiar pore pressure responses were observed. Cyclic pore pressures were only measured during the first 60–80?s of the 6-min train passage, and thereafter the pressures decayed rapidly to the initial values. The pore pressure changes in the shallow peat layer were lower than those in the deep soil layer. Possible mechanisms causing such peculiar pore pressure responses, surface settlement, and piping holes were explored and identified. It was found that the stiffness contrast between the stiff, upper granular fill and the soft, native peat material could lead to a redistribution of tensile stress in the granular fill layer to the peat layer due to the moving train load. This stress redistribution promotes the propensity of vertical piping in the peat layer.  相似文献   

20.
Photosynthetically active radiation (PAR) intercepted by orange orchards (Frost Nucellar navel) having different canopy sizes was measured to determine the relationships with crop coefficient (Kco and Kcr) values and crop evapotranspiration (ET) (ETc). Three separate experiments were carried out near Lindsay, Calif. during the months of July and August 2004 to compute the fraction of light PAR intercepted by mature and immature orange orchards. Periodic readings of PAR data were compared with near simultaneous measurements of net radiation Rn?(mV), heat transfer through exposed flux plates Fh?(mV), and incident total solar radiation Rs?(mV). The PAR data were used to calculate canopy light interception and the results were compared with those computed from the Fh and Rs data. The other sensors were studied as possible substitutes for the more expensive PAR light bar. Light interception by the different canopies was related to crop coefficient (Kco and Kcr) values that were determined by micrometeorological measurement of ETc and Penman–Monteith reference evapotranspiration ETo and ETr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号