首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been much advancement using conceptual models and analytical methods to explain various aspects of pile performance. They are mainly based on the findings of model tests and full-scale pile tests in fine-grained and coarse-grained soils, and driven piles on land are normally less than 40?m. Design methods developed from this data bank of pile geometries and soil conditions for long piles should be treated with caution. In this paper, 13 H-piles of 34–60?m and 7,096?kN capacity founded on granitic saprolite are studied. Among them, two piles were restriked at different time intervals. All piles were axially load tested statically using a maintained load method. In contrast to the short rigid piles founded on weaker soil, their load-transfer mechanism varied with the magnitude of applied load and pile length. They deformed almost linearly at small loads and might have buckled when the loads were large and the creep settlements were found to be length dependent. Existing criteria might not be able to interpret failure loads sometimes, but a pile dynamic analyzer was found to give the best estimate on pile capacity.  相似文献   

2.
The majority of integral abutment bridges (IABs) in the United States are supported on steel H-piles to provide the flexibility necessary to minimize the attraction of large lateral loads to the foundation and abutment. In Hawaii, steel H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel H-piles in scour-susceptible soils has led to a preference for the use of concrete deep foundations. A drilled shaft-supported IAB was instrumented to study its behavior during and after construction over a 45-month period. This same IAB was studied using the finite-element method (FEM) in both two- (2D) and three dimensional (3D). The 3D FEM yields larger overall pile curvature and moments than 2D because in 3D, the high plasticity soil is able to displace in between the drilled shafts thereby “dragging” the shafts to a more highly curved profile while soil flow is restricted by plane strain beam elements in 2D. Measured drilled shaft axial loads were higher than the FEM values mainly due to differences between the assumed and actual axial stiffness and to a lesser extent on concrete creep in the drilled shafts and uneven distribution of loads among drilled shafts. Numerical simulations of thermal and stream loadings were also performed on this IAB.  相似文献   

3.
Conventional pile materials such as steel, concrete, and timber are prone to deterioration for many reasons. Fiber-reinforced polymer (FRP) concrete composites represent an alternative construction material for deep foundations that can eliminate many of the performance disadvantages of traditional piling materials. However, FRP composites present several difficulties related to constructability, and the lack of design tools for their implementation as a foundation element. This paper describes the results of an experimental study on frictional FRP/dense sand interface characteristics and the constructability of FRP–concrete composite piles. An innovative toe driving technique is developed to install the empty FRP shells in the soil and self-consolidating concrete is subsequently cast in them. The experimental program involves interface shear tests on small FRP samples and uplift load tests on large-scale model piles. Two different FRP pile materials with different roughness and a reference steel pile are examined. Static uplift load tests are conducted on different piles installed in soil samples subjected to different confining pressures in the pressure chamber. The results showed that the interface friction for FRP materials compared favorably with conventional steel material. It was shown that toe driving is suitable for installation of FRP piles in dense soils.  相似文献   

4.
Piled raft foundations are often used when the supporting soil has adequate bearing capacity but the raft settlements exceed allowable values. In traditional practice, long piles with high load capacity are usually used that may lead to two structural problems: the structural collapse of the pile and large strains mobilized in the raft leading to an uneconomic design. This paper presents an experimental study of the effectiveness of using short piles either connected or unconnected to the raft (instead of long piles) on the behavior of an eccentrically loaded raft. The load configuration was designed to simulate rafts under vertical loads and overturning moment. Several arrangements of piles with different lengths and numbers along with the effect of the relative density of the soil and the load eccentricity were studied. Test results indicate that the inclusion of short piles adjacent to the raft edges not only significantly improves the raft bearing pressures but also leads to a reduction in raft settlements and tilts leading to an economical design of the raft. However, the efficiency of the short piles-raft system is dependent on the load eccentricity ratio and pile arrangement. Also, connecting short piles to the raft gives greater improvement in the raft behavior than unconnected piles. Based on test results, the effects of different parameters are presented and discussed.  相似文献   

5.
In this study, two column and pile-footing models consisting of concrete-filled steel tube (CFT) columns, reinforced concrete footings, and steel H-piles were designed and constructed at approximately one-fifth scale. The experimental differences between the two models were in the design details of the CFT column-to-footing connections. One connection consisted of welded studs, and the other used a base plate and stiffeners. The two models were tested in a vertical cantilever condition with cyclic horizontal forces and a constant axial load applied to the top of the column. The model footings were supported on 16 model steel H-piles simulating the pile foundation. Under imposed horizontal displacement, the two models with different CFT-to-pile-cap connection details demonstrated satisfactory cyclic behavior, with the development of full plastic hinges at the bottom of the columns. Strut-and-tie modeling analysis was carried out to show the force-resisting mechanism in the reinforced concrete footing. The study also validated a new design detail for the anchorage of steel H-piles to pile caps.  相似文献   

6.
Observed Performance of Long Steel H-Piles Jacked into Sandy Soils   总被引:1,自引:0,他引:1  
Full-scale field tests were performed to study the behavior of two steel H-piles jacked into dense sandy soils. The maximum embedded length of the test piles was over 40?m and the maximum jacking force used was in excess of 7,000?kN. The test piles were heavily instrumented with strain gauges along their shafts to measure the load transfer mechanisms during jacking and the subsequent period of static load tests. Piezometers were installed in the vicinity of the piles to monitor the pore pressure responses at different depths. The time effect and the effect of installation of adjacent piles were also investigated in this study. The test results indicated that, although both piles were founded on stiff sandy strata, most of the pile capacity was carried by shaft resistance rather than base resistance. This observation implies that the design concept that piles in dense sandy soils have very large base capacity and small shaft resistance is likely to be inappropriate for jacked piles. It was also found that the variation in pore pressures induced by pile jacking was closely associated with the progress of pile penetration; the pore pressure measured by each piezometer reached a maximum when the pile tip arrived at the piezometer level. A nearby pile jacking was able to produce large tensile stresses dominating in the major portion of an installed pile; both the magnitude and distribution of the induced stresses were related to the penetration depth of the installing pile.  相似文献   

7.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

8.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

9.
A large-scale field-monitoring program for studying residual forces in long-driven piles is described. Eleven steel H-piles, 34.2–59.8?m in embedded length, were instrumented with vibrating-wire strain gauges, installed and subjected to static loading tests in a building site in Hong Kong. The residual forces in these piles during and after pile installation were recorded. The development of residual forces as it relates to the pile penetration depth during construction, and in time after the piles were installed, is presented. The measured load transfers in the piles from static loading tests are reported and the effect of the residual forces on the interpretation of load-transfer behavior is studied. The field measurements show that residual forces increase approximately exponentially with penetration depth. The residual forces continue to increase with time after pile driving due to secondary compression of disturbed soils around the pile shaft and other factors. The large residual forces in the long piles significantly affect the interpretation of the pile load distributions. The effect of residual forces on the shaft resistance is significant at shallow depths. Bearing-capacity theory tends to overpredict the true toe resistance of the long piles founded in weathered soils.  相似文献   

10.
Integral abutment bridges (IABs) with short steel H-pile (HP) supported foundations ( ? 4?m of pile depth) are economical for many environmentally sensitive sites with shallow bedrock. However, such short piles may not develop an assumed, fixed-end support condition at some depth below the pile cap, which is inconsistent with traditional pile design assumptions involving an equivalent length for bending behavior of the pile. In this study, the response of an IAB with short HP-supported foundations and no special pile tip details such as drilling and socketing is investigated. Instrumentation of a single-span IAB with 4-m-long piles at one abutment and 6.2- to 8.7-m-long piles at the second abutment is described. Instrumentation includes pile strain gauging, pile inclinometers, extensometers to measure abutment movement, earth pressure cells, and thermistors. Pile and bridge response during construction, under controlled live load testing, and due to seasonal movements are presented and discussed. Abutment and pile head rotations due to self-weight, live load, and seasonal movements were all found to be significant. Measured abutment movements were likely affected by both temperature changes and deck creep and shrinkage. Based on the field study results presented here, moderately short HPs driven to bedrock without special tip details appear to perform well in IABs and do not experience stresses larger than those seen by longer piles.  相似文献   

11.
Proof pile load tests are an important means to cope with uncertainties in the design and construction of pile foundations. In this paper, a systematic method to incorporate the results of proof load tests not conducted to failure into the design of pile foundations is developed. In addition, illustrative acceptance criteria for driven piles based on proof load tests are proposed for use in a reliability-based design. Finally, modifications to conventional proof test procedures are studied so that the value derived from proof tests can be maximized. Whether or not a proof test is conducted to failure, its results can be used to update the probability distribution of the pile capacity using the method proposed in this paper. Hence, contributions of the proof test can be included in foundation design in a logical manner by considering several load test parameters such as the number of tests, the test load, the factor of safety, and test results. This adds value to proof load tests and warrants improvements in the procedures for acceptance of pile foundations using proof load tests. A larger test load for proof tests, say 1.5 times the predicted pile capacity, is recommended since it will yield more information about the capacity statistics and thus allow for more economical designs.  相似文献   

12.
The impulse response test is a nondestructive evaluation technique commonly used for quality control of driven concrete piles and drilled shafts where the pile heads are accessible. When evaluating existing foundations, the presence of a pile cap or other structure makes the pile heads inaccessible and introduces uncertainties in the interpretation of impulse response results. A test section was constructed at the National Geotechnical Experimentation Site (NGES) at Northwestern University to examine the applicability of nondestructive testing methods in evaluating deep foundations under inaccessible-head conditions. This paper focuses on the results of impulse response tests conducted atop the three pile caps at the NGES. Based on field experimentation and numerical simulations, a frequency was determined below which the impulse response test could be used for inaccessible-head conditions. This cutoff frequency primarily depends upon the geometry of the pile cap and pile. A case study is presented that describes impulse response tests obtained on a number of drilled shafts both after the shaft was constructed and after grade beams and walls were built. The results of these tests also follow the trends observed in the NGES tests related to cutoff frequency.  相似文献   

13.
“Brownfields” are real estate properties with subsurface or surface contamination. The redevelopment of Brownfields is required to clean, improve, and protect the environment. Pile foundations are often used in Brownfields and other contaminated site situations to support structures. Regulators are concerned about the environmental safety of pile foundations in Brownfields sites, since piling in Brownfields may lead to transport of contaminants from the contaminated region to underground aquifers. This investigation is an extension of previous research programs on pile foundations in Brownfields or contaminated sites conducted at the University of New Orleans. The purpose of the overall investigation is to evaluate the potential for contaminant transport due to pile foundations in Brownfields. The current paper summarizes the research carried out to ascertain the potential for contaminant transport from concrete piles of different shape, depth of penetration, and method of installation. The results of bench scale model tests and numerical studies are presented. Under full penetration conditions, the square shaped and circular cast-in-place piles were found to have a higher potential for contaminant transport than circular driven piles. There is a low potential for contaminant transport in the case of piles penetrating less than 95% of an aquitard. Selected results from a previous program on wooden and steel piles are summarized for comparison.  相似文献   

14.
A method was presented to evaluate the reliability of axially loaded pile groups designed using the traditional concept of group efficiency along the lines of load and resistance factor design. Group effects and system effects were identified as the major causes that led to a significantly greater observed reliability of pile foundations than calculated reliability of single piles. Statistical analyses were conducted to evaluate these effects based on observed pile performance. A database of pile group load tests was collected and interpreted for this purpose. Subsequently, the reliability of pile groups associated with the allowable stress design practice was calculated using the suggested method. The calculated probability of failure of pile groups was found to be one to four orders of magnitude smaller than that of single piles, depending on the significance of group effects and system effects. Finally, values of the target reliability index βTS for single piles required to achieve a specified target reliability of pile group foundations were calculated for several design methods. Due to group effects and system effects, the values of βTS should be different for single piles, a pile group, and a pile system of several groups.  相似文献   

15.
The behavior of pile foundations subjected to horizontal loading is typically evaluated using horizontal load tests. Although load tests are valuable to understand site-specific soil-structure interaction phenomena, validated predictive methods are also useful during the design phase. In this study, the results from horizontal load tests are compared with methods which predict the horizontal bearing capacity of piles using in situ measurements of soil behavior. Specifically, several horizontal load tests were performed in order to evaluate the behavior of two 12-m long Strauss piles and four bored piles with similar length, all installed in a lateritic soil profile. Two prediction methods were evaluated using p-y curves computed from the results of Marchetti’s dilatometer test (DMT) results. The predictive methods using the p-y curves from the DMT showed good agreement with the behavior observed in the pile loading test.  相似文献   

16.
通过室内模型试验,实测得到碎石桩、夯实水泥土桩和CFG桩复合地基桩土荷载分担比、桩土应力比和桩间土深层变形,并对三类不同桩体材料复合地基的承载及变形性状进行了对比分析.认为碎石桩复合地基和夯实水泥土桩复合地基均存在有效桩长或有效复合土层厚度;碎石桩桩长超过有效桩长,对提高复合地基承载力和压缩模量、减小变形效果不明显,除一些特别情况如为处理可液化地基外,设计桩长可适当超过有效桩长,但不宜过长;夯实水泥土桩复合地基的有效桩长与桩身强度相关性显著,应以桩身强度控制进行夯实水泥土桩桩体设计,使按桩身强度确定的单桩承载力大于或等于由桩周土及桩端土的抗力所提供的单桩承载力;CFG桩复合地基桩身强度高,桩体自身压缩性小,可全桩长发挥侧阻作用,当桩端落在好的持力层时,能很好地发挥端阻,提高承载力,减小变形,设计时应优先选择好的桩端持力层进行设计.   相似文献   

17.
Both the driving response and static bearing capacity of open-ended piles are affected by the soil plug that forms inside the pile during pile driving. In order to investigate the effect of the soil plug on the static and dynamic response of an open-ended pile and the load capacity of pipe piles in general, field pile load tests were performed on instrumented open- and closed-ended piles driven into sand. For the open-ended pile, the soil plug length was continuously measured during pile driving, allowing calculation of the incremental filling ratio for the pile. The cumulative hammer blow count for the open-ended pile was 16% lower than for the closed-ended pile. The limit unit shaft resistance and the limit unit base resistance of the open-ended pile were 51 and 32% lower than the corresponding values for the closed-ended pile. It was also observed, for the open-ended pile, that the unit soil plug resistance was only about 28% of the unit annulus resistance, and that the average unit frictional resistance between the soil plug and the inner surface of the open-ended pile was 36% higher than its unit outside shaft resistance.  相似文献   

18.
Systematic studies of pile response during static and dynamic load tests are generally too expensive to conduct in the field, and at model scale may be limited by scaling effects and the ability to obtain accurate stress waves. This paper describes such a study, conducted at model scale in a geotechnical centrifuge, for piles driven into dense sand. Adverse scaling effects were minimized by the use of extremely fine sand (silica flour), and accurate stress waves were obtained using high-frequency data logging, together with a Hopkinson bar arrangement for the measurement of pile-head velocity. The overall aim of the study was to compare dynamic and static test data, for open- and closed-ended piles driven into dense sand, for a range of delivered hammer energies. Open- and close-ended model piles were driven into dense sand and statically load tested at different penetrations, without stopping the centrifuge. Stress-wave data were collected, during continuous driving and from single blows immediately prior to the commencement of static load testing. An assessment of the accuracy of the mobilized soil resistance estimated from dynamic testing, using different levels of analysis, has been made by direct comparison with the static load test data. Particular emphasis has been placed on the performance of the dynamic analyses in light of different driving conditions and delivered hammer energy. From measurements of the delivered hammer energy, the efficiency of the centrifuge pile driving system was also assessed.  相似文献   

19.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

20.
Piles composed of more than one material in their cross section have been used for more than 100 years. Originally this was limited to driven steel shell or pipe piles filled with portland-cement concrete. More recent developments include various types of drilled elements such as micropiles that consist of various combinations of steel shells, portland-cement grout, and steel reinforcing bars. The structural analysis or design of piles with multicomponent cross sections under axial load requires that the axial stress be apportioned to the various components. Traditionally this has been done using an approximate one-dimensional model that implies the components interact with each other only axially, not radially, and that there is no radial interaction with the ground around the pile. This note presents a new three-dimensional model that explicitly and rigorously considers not only the Poisson effects caused by axial load and the triaxial stress field that develops within and between components of a pile as a result but also how this stress field is affected by radial stresses in the adjacent ground. This new model is based on the theory of linear elasticity and yields a closed-form solution that can be either evaluated independently or incorporated within a more general analytical model for axial pile capacity. Examples of calculated results obtained using this new model are presented and suggest that Poisson effects are relatively small in magnitude so that the traditional one-dimensional model is adequate for routine use in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号