首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This study proposes a method of detecting, locating, and quantifying structural damage by directly using structural vibration measurements in the time domain. In this method, the coupling effect of the damage at different locations in the structure on the structural vibratory responses is eliminated by projecting these measured quantities onto some specific subspaces. As a result, the structural system, generally modeled with multiple degree of freedom, is decomposed into several independent single-degree-of-freedom (SDOF) systems, every one of which is only associated with the damage at one certain location or region. A monitor is designed as an observer to detect the structural damage related to each SDOF system. A decision-making scheme is developed to correlate the monitor’s output to the occurrence of the damage. The severity of the damage is estimated with a traditional system identification method in an iterative way. The analysis of the effects of measurement noise is also included. Numerical examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Studies have shown that experimentally determined dynamic properties can be used to identify the characteristics of a structure. In this paper, a damage detection technique is developed and demonstrated using system identification, finite-element modeling, and a modal update process. The proposed approach, SFM, provides a rapid estimate of damage locations and magnitudes. The proposed methodology is applied to three case studies. The first is a numerical simulation using computer generated data. The second is an ASCE benchmark problem for structural health monitoring, where the results can be compared to other researchers. The third is a full-scale highway bridge that was field tested using a forced vibration shaking machine. In this case study, the bridge was shaken in several states of damage and the proposed methodology was utilized to detect and determine the location and extent of the damage. It was found that, using the collected data, the SFM approach was able to consistently predict the location of damage as well as estimate the magnitude of the damage.  相似文献   

3.
Vibration-based damage detection methods have been widely studied for structural health monitoring of civil infrastructure. Acceleration measurements are frequently employed to extract the dynamic characteristics of the structure and locate damage because they can be obtained conveniently and possess relatively little noise. However, considering the fact that damage is a local phenomenon, the sole use of acceleration measurements that are intrinsically global structural responses limits damage detection capabilities. This paper investigates the possibility of using both global and local measurements to improve the accuracy and robustness of damage detection methods. A multimetric approach based on the damage locating vector method is proposed. Numerical simulations are conducted to verify the efficacy of the proposed approach.  相似文献   

4.
The issue of structural damage detection is addressed through an innovative multivariate statistical approach in this paper. By invoking principal component analysis, the vibration responses acquired from the structure being monitored are represented by the multivariate data of the sample principal component coefficients (PCCs). A damage indicator is then defined based on a multivariate exponentially weighted moving average control chart analysis formulation, involving special procedures to allow for the effects of the estimated parameters and to determine the upper control limits in the control chart analysis for structural damage detection applications. Also, a data shuffling procedure is proposed to remove the autocorrelation probably present in the obtained sample PCCs. This multivariate statistical structural damage detection scheme can be applied to either the time domain responses or the frequency domain responses. The efficacy and advantages of the scheme are demonstrated by the numerical examples of a five-story shear frame and a shear wall as well as the experimental example of the I-40 Bridge benchmark.  相似文献   

5.
System identification is an area which deals with developing mathematical models to characterize the input-output behavior of an unknown system by means of experimental data. Structural health monitoring (SHM) provides the tools and technologies to collect and analyze input and output data to track the structural behavior. One of the most commonly used SHM technologies is dynamic testing. Ambient vibration testing is a practical dynamic testing method especially for large civil structures where input excitation cannot be directly measured. This paper presents a conceptual and reliable methodology for system identification and structural condition assessment using ambient vibration data where input data are not available. The system identification methodology presented in this study is based on the use of complex mode indicator functions (CMIFs) coupled with the random decrement (RD) method to identify the modal parameters from the output only data sets. CMIF is employed for parameter identification from the unscaled multiple-input multiple-output data sets generated using the RD method. For condition assessment, unscaled flexibility and the deflection profiles obtained from the dynamic tests are presented as a conceptual indicator. Laboratory tests on a steel grid and field tests on a long-span bridge were conducted and the dynamic properties identified from these tests are presented. For demonstrating condition assessment, deflected shapes obtained from unscaled flexibility are compared for undamaged and damaged laboratory grid structures. It is shown that structural changes on the steel grid structure are identified by using the unscaled deflected shapes.  相似文献   

6.
Two frequency response correlation criteria, namely the global shape correlation (GSC) function and the global amplitude correlation (GAC) function, are established tools to quantify the correlation between predictions from a finite-element (FE) model and measured data for the purposes of FE model validation and updating. This paper extends the application of these two correlation criteria to structural health monitoring and damage detection. In addition, window-averaged versions of the GSC and GAC, namely WAIGSC and WAIGAC, are defined as effective damage indicators to quantify the change in structural response. An integrated method of structural health monitoring and damage assessment, based on the correlation functions and radial basis function neural networks, is proposed and the technique is applied to a bookshelf structure with 24 measured responses. The undamaged and damaged states, single and multiple damage locations, as well as damage levels, were successfully identified in all cases studied. The ability of the proposed method to cope with incomplete measurements is also discussed.  相似文献   

7.
One of the issues complicating the reliability assessment of structural health monitoring (SHM) methodologies slated for implementation under field conditions for damage detection in conjunction with typical infrastructure systems, is the paucity of experimental measurements from such structures. Particularly lacking is the availability of experimental data from physical structures, where quantifiable changes are made in the structure while SHM studies are being performed. That is precisely the focus of this paper. As a result of the 1994 Northridge Earthquake, a critical six-story building in the metropolitan Los Angeles region was found to need significant seismic mitigation measures. The building was instrumented with 14 state-of-the-art strong-motion accelerometers that were placed at various locations and in different orientations throughout the building. The instrumentation network was used to acquire extensive ambient vibration data sets at regular intervals that covered the whole construction phase, during which the building evolved from its original condition to the retrofitted status. This paper evaluates the usefulness of the natural excitation technique (NExT) in conjunction with the eigensystem realization algorithm (ERA) to determine the evolution of the modal properties of the subject building during the various phases of its retrofit process. Further, an assessment is made of the influence on the system identification results of significant user-selectable parameters such as: data window size and overlap; reference degree-of-freedom; and the dimensions of the associated Hankel matrix. In spite of the very low levels of ambient excitation, and the low spatial resolution of the sensors, use of the NExT/ERA algorithm yielded excellent identification results of the dominant modes of the building. Changes in the identified structural frequencies are correlated with the time that specific structural changes were made. It is shown that this unique collection of data can be extremely useful in calibrating the accuracy and sensitivity of various SHM schemes, as well as in providing useful identification parameter guidelines that can assist in the planning and deployment of sensor networks and associated data collection schemes for SHM applications.  相似文献   

8.
This paper presents an experimental investigation on the applicability of the empirical mode decomposition (EMD) for identifying structural damage caused by a sudden change of structural stiffness. A three-story shear building model was constructed and installed on a shaking table with two springs horizontally connected to the first floor of the building to provide additional structural stiffness. Structural damage was simulated by suddenly releasing two pretensioned springs either simultaneously or successively. Various damage severities were produced using springs of different stiffness. A series of free vibration, random vibration, and earthquake simulation tests were performed on the building with sudden stiffness changes. Dynamic responses including floor accelerations and displacements, column strains, and spring releasing time instants were measured. The EMD was then applied to measured time histories to identify damage time instant and damage location for various test cases. The comparison of identified results with measured ones showed that damage time instants could be accurately detected in terms of damage spikes extracted directly from the measurement data by EMD. The damage location could be determined by the spatial distribution of the spikes along the building. The influence of damage severity, sampling frequency, and measured quantities on the performance of EMD for damage detection was also discussed.  相似文献   

9.
Damage often causes changes in the dynamic characteristics of a structure such as frequencies and mode shapes. Vibration-based damage identification techniques utilize the changes in the dynamic characteristics of a structure to determine the location and extent of damage in the structure. Such techniques are applied in this study to the Crowchild Bridge, a steel-free deck continuous bridge located in western Canada. While the numerical models of the bridge are correlated with the measured dynamic characteristics, computer simulation is used to study the identification of a number of different damage patterns, and the effects of measurement errors and incomplete mode shapes on the quality of results are evaluated. The effectiveness of some selected damage identification techniques is examined; the potential difficulties in identifying the damage are outlined; and areas of further research are suggested. A three-dimensional finite-element model and a simple two-dimensional girder model of the bridge have been constructed to study the usefulness of the selected damage identification methods. Another promising damage detection method proposed here is based on the application of neural networks that combines a vibration-based method.  相似文献   

10.
The problem of system identification is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms that use measured data from the system to characterize it without significant a priori knowledge of the system. In this paper, a parameter estimation technique based on an evolution strategy (an optimization algorithm inspired by natural evolution) is presented to overcome some of the difficulties encountered in the field. Using this method, a set of direct problems is solved instead of directly tackling the inverse problem. If the uniqueness of the identification solution is guaranteed for the assumed model and the available data, this heuristic method is able to find a solution without incurring restrictions of other classical optimization methods, like the need for reliable initial estimates and convergence to local optima. Some results obtained with this algorithm are presented for the identification of 3 degrees of freedom (DOF) and a 10?DOF structural system under conditions including limited input/output data, noise polluted signals, and no prior knowledge of mass, damping, or stiffness of the system.  相似文献   

11.
This paper discusses advances in evaluation and health monitoring of cable-stayed bridges and available methods. Bridge engineers and highway administrators in the United States are gradually becoming more comfortable with cable-stayed bridges, and the past few years have seen a significant increase in construction of these elegant bridges in many parts of this great nation. In the last decade, several investigations have been directed to condition assessment of cable-stayed bridges and contributed extensively to advances in construction, design, and health monitoring of this type of structures. Results of these investigations have helped toward formation of a unified approach for in-service evaluation and problem solving of these aesthetic structures. This paper describes this approach with reference to sources for more detailed information. Additionally, discussed in this paper are a series of methods developed or tailored for evaluation of these unique structures. The paper also reviews the typical problems observed in the course of field evaluations for in-service cable-stayed bridges.  相似文献   

12.
Global monitoring of civil structures is a demanding challenge for engineers. Acoustic emission (AE) is one of the techniques that have the potential to inspect large volumes with transducers placed in strategic locations of the structure. In this paper, the AE technique is used to characterize the structural condition of a concrete bridge. The evaluation of AE activity leads to information about any specific part of the structure that requires attention. Consequently, more detailed examinations can be conducted once the target area is selected. In this case, wave propagation velocity was used as a means to evaluate, in more detail, the condition of the region indicated by the AE analysis.  相似文献   

13.
In the field of nondestructive evaluation and damage detection, there is continued interest in the utilization of vibrational techniques. Structural damage will result in permanent changes in the distribution of structural stiffness. These changes may be detected through structural monitoring. Because of the direct relationship of stiffness, mass, and damping of a multi-degree-of-freedom system to the natural frequencies, mode shapes, and modal damping values, many studies have been directed at using these dynamic properties for the purpose of structural health monitoring. The use of vibrational monitoring is a developing field of structural analysis and is capable of assisting in both detecting and locating structural damage. Vibrational data have been shown to be most useful when used in conjunction with other monitoring systems if a remote and robust damage detection scheme is desired. This paper includes a literature review that summarizes the basic approaches to vibrational monitoring, suggested guidelines for sensor selection and monitoring, and concludes with three example case studies.  相似文献   

14.
Passive damping in shock and vibration isolation systems reduces the deformation of the isolation system but can increase the acceleration sustained by the isolated object. Semiactive (i.e., controllable) damping systems offer a solution to the problem of increased vibration transmissibility at high frequencies. Semiactive damping is especially relevant to protecting acceleration-sensitive components to the effects of large impulsive earthquakes. In this paper, we compare three semiactive control policies, i.e., pseudonegative-stiffness control, continuous pseudoskyhook-damping control, and bang-bang pseudoskyhook-damping control, in terms of their effectiveness in addressing the deficiencies of passive isolation damping. In order to establish a performance goal for these suboptimal semiactive control rules, we present a method for true optimization of the response of dynamically excited, semiactively controlled structures subjected to constraints imposed by the dynamics of a particular semiactive device. The optimization procedure involves solving Euler–Lagrange equations. The closed-loop dynamics of structures with semiactive control systems are nonlinear due to the parametric nature of the control actions. These nonlinearities preclude an analytical evaluation of Laplace transforms. In this paper, frequency response functions for semiactively controlled structural systems are compiled from the computed time history responses to sinusoidal and pulse-like base excitations. For control devices with no saturation forces, the closed-loop frequency response functions are independent of the excitation amplitude. We make use of this homogeneity of the solution of semiactive control systems and present results in dimensionless form.  相似文献   

15.
The dynamics of most civil engineering structures is affected by the ambient temperature. This raises the issue of discriminating changes in modal parameters due to damage from those due to such effects. A statistical parametric damage detection algorithm based on a null space residual associated with output-only subspace identification and a χ2 test built on that residual has been designed by some of the writers. The purpose of this paper is to propose two extensions of this detection method which account for the temperature effect. The first extension uses a thermal model for deriving a temperature-adjusted null space. The second extension exploits the thermal model together with a statistical nuisance rejection technique. Both methods are illustrated on a laboratory test case within a climatic chamber.  相似文献   

16.
Foundation impedance ordinates are identified from forced vibration tests conducted on a large-scale model test structure in Garner Valley, California. The structure is a steel moment frame with removable cross-bracing, a reinforced concrete roof, and a nonembedded square slab resting on Holocene silty sands. Low-amplitude vibration is applied across the frequency range of 5–15?Hz with a uniaxial shaker mounted on the roof slab. We describe procedures for calculating frequency-dependent foundation stiffness and damping for horizontal translational and rotational vibration modes. We apply the procedures to test data obtained with the structure in its braced and unbraced configurations. Experimental stiffness ordinates exhibit negligible frequency dependence in translation but significant reductions with frequency in rotation. Damping increases strongly with frequency, is stronger in translation than in rocking, and demonstrates contributions from both radiation and hysteretic sources. The impedance ordinates are generally consistent with numerical models for a surface foundation on a half-space, providing that soil moduli are modestly increased from free-field values to account for structural weight, and hysteretic soil damping is considered.  相似文献   

17.
A decentralized control method with improved robustness and design flexibility is proposed for reducing vibrations of seismically excited building structures. In a previous study, a control scheme was developed for multistory building models using nonlinear, decentralized control theory. This control method has now been improved in this study in that less information about material properties and geometrical parameters of the building is needed and the selection of control design parameters is more flexible. The nonlinear behavior of the proposed control system is studied and its stability property is proven mathematically. To evaluate the effectiveness and robustness of the proposed method, three illustrative structural models, i.e., an eight-story elastic shear beam model, a two-story nonlinear elastic shear beam model, and a 20-story elastic benchmark model are studied. The 1940 El Centro and the 1995 Kobe earthquakes are used in these examples. The performance of the current control design, as applied to these examples, has shown to be more effective in reducing structural responses and improving robustness.  相似文献   

18.
In this paper, the use of a hybrid evolutionary optimization algorithm is proposed for global optimization of pavement structural parameters through inverse modeling. Shuffled complex evolution (SCE) is a population-based stochastic optimization technique combining the competitive complex evolution with the controlled random search, the implicit clustering, and the complex shuffling. Back-calculation of pavement layer moduli is an ill-posed inverse engineering problem, which involves searching for the optimal combination of pavement layer stiffness solutions in an unsmooth, multimodal, complex search space. SCE is especially considered a robust and efficient approach for global optimization of multimodal functions. A desirable characteristic of the SCE algorithm is that it uses information about the nature of the response surface, extracted using the deterministic Simplex geometric shape, to direct the search into regions with higher posterior probability. The hybrid back-calculation system described in this paper combines the robustness of the SCE in global optimization with the computational efficiency of neural networks and advanced pavement system characterization offered by employing finite-element models. This is the first time the SCE approach is applied to real-time nondestructive evaluation of pavement systems required in the routine maintenance and rehabilitation activities for sustainable transportation infrastructure.  相似文献   

19.
A damage detection technique, which does not rely on any past baseline signals, is proposed to assess damage in composite plates by using an enhanced time reversal method. A time reversal concept of modern acoustics has been adapted to guided-wave propagation to improve the detectability of local defects in composite structures. In particular, wavelet-based signal processing techniques have been developed to enhance the time reversibility of Lamb waves in thin composite laminates. In the enhanced time reversal method, an input signal at an excitation point can be reconstructed if a response signal measured at another point is reemitted to the original excitation point after being reversed in a time domain. This time reversibility is based on linear reciprocity of elastic waves, and it is violated when nonlinearity is caused by a defect along a direct wave path. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring the baseline signal for comparison. The validity of the proposed method has been exemplified through experimental studies on a quasi-isotropic laminate with delamination.  相似文献   

20.
In this study, a new technique for detecting ungrouted cells in concrete block masonry constructions was developed. The concept, based on detecting the local dielectric permittivity variations, was employed to design coplanar capacitance sensors with high sensitivities to detect such construction defects. An analytical model and finite element simulations were used to assess the influence of the sensor geometrical parameters on the sensor signals and to optimize the sensor design. To experimentally verify the model, the dielectric properties of various materials involved in concrete masonry walls were measured. In addition, a masonry wall containing predetermined grouted and ungrouted cells was constructed and inspected using the developed sensors in a laboratory setting. Moreover, different capacitance sensors were designed and compared with respect to their sensitivity, signal-to-noise ratio, and coefficient of variation of the inspected measurements. Excellent agreements were found between the experimental capacitance signal response parameters and those predicted by the analytical and finite element models. The proposed sensor design, coupled with a commercially available portable capacitance meter, would facilitate employing this technique in the field for rapid inspection of masonry structures without the need for sophisticated data analyses usually required by other more expensive and time consuming methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号