首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 9 毫秒
1.
As an alternative to a field-based liquefaction resistance approach, cyclic triaxial tests with bender elements were used to develop a new correlation between cyclic resistance ratio (CRR) and overburden stress-corrected shear-wave velocity (VS1) for two nonplastic silts obtained from Providence, Rhode Island. Samples of natural nonplastic silt were recovered by block sampling and from geotechnical borings/split-spoon sampling. The data show that the correlation is independent of the soils’ stress history as well as the method used to prepare the silt for cyclic testing. The laboratory results indicate that using the existing field-based CRR-VS1 correlations will significantly overestimate the cyclic resistance of the Providence silts. The strong dependency of the CRR-VS1 curves on soil type also suggests the necessity of developing silt-specific liquefaction resistance curves from laboratory cyclic tests performed on reconstituted samples.  相似文献   

2.
Shear wave velocity (Vs) offers engineers a promising alternative tool to evaluate liquefaction resistance of sandy soils, and the lack of sufficient in-situ databases makes controlled laboratory study very important. In this study, semitheoretical considerations were first given based on review of previous liquefaction studies, which predicted a possible relationship between laboratory cyclic resistance ratio (CRRtx) and Vs normalized with respect to the minimum void ratio, confining stress and exponent n of Hardin equation. Undrained cyclic triaxial tests were then performed on three reconstituted sands with Vs measured by bender elements, which verified this soil-type-dependent relationship. Further investigation on similar laboratory studies resulted in a database of 291 sets of data from 34 types of sandy soils, based on which the correlation between liquefaction resistance and Vs was established statistically and further converted to equivalent field conditions with well-defined parameters, revealing that CRR will vary proportionally with (Vs1)4. Detailed comparisons with Vs-based site-specific investigations show that the present lower-bound CRR–Vs1 curve is a reliable prediction especially for sites with higher CSR or Vs1. The framework of liquefaction assessment based on the present laboratory study is proposed for engineering practice.  相似文献   

3.
In order to simulate the effect of drainage on soils adjacent to gravel drains that are installed as countermeasure against liquefaction, several series of cyclic triaxial tests were performed on saturated sands under partially drained conditions. The condition of partial drainage under cyclic loading was simulated in the laboratory using triaxial testing equipment installed with a drainage control valve to precisely regulate the volume of water being drained from test specimens. Effects of both drainage conditions and loading frequencies on cyclic response were incorporated through the coefficient of drainage effect, α*. Experimental results showed that for sand exhibiting strain softening, the partially drained response was controlled by the critical effective stress ratio while for sand showing strain hardening behavior, the controlling factor was the phase transformation stress ratio. Moreover, test results indicated that the minimum liquefaction resistance under partially drained conditions can be used as a parameter to describe the liquefaction resistance of sands improved by the gravel drain method. From these results, a simplified procedure for designing gravel drains based on the factor of safety (FL) concept was proposed.  相似文献   

4.
Data from over 30 sites in 5 countries are analyzed to develop updated factors for correcting liquefaction resistance for aged sand deposits. Results of cyclic laboratory tests on relatively undisturbed and reconstituted specimens suggest an increase in the correction factors of 0.12 per log cycle of time and an average reference age of 2 days for the reconstitute specimens. Laboratory and field test results combined with cyclic resistance ratio (CRR) charts suggest an increase in the correction factors of 0.13 per log cycle of time and an average reference age of 23 years. A reference age of 23 years seems appropriate for the commonly used CRR charts derived from field liquefaction and no liquefaction case history data. Because age of natural deposits is often difficult to accurately determine, a relationship between measured to estimated shear-wave velocity ratio (MEVR) and liquefaction resistance correction factor is also derived directly from the compiled data. This new MEVR-liquefaction resistance correction factor relationship is not as sensitive to MEVR as in the relationship derived indirectly in a previous paper.  相似文献   

5.
Factors for correcting liquefaction resistance for aged sands using ratios of measured to estimated shear-wave velocity (MEVR) are derived in this paper. Estimated values of shear-wave velocity (VS) are computed for 91 penetration resistance-VS data pairs using previously published relationships. Linear regression is performed on values of MEVR and corresponding average age. Age of the sand layer is taken as the time between VS measurements and initial deposition or last critical disturbance. It is found that MEVR increases by a factor of about 0.08 per log cycle of time, and time equals about 6?years on average when MEVR equals 1 for the recommended penetration resistance-VS relationships. The resulting regression equation is combined with the strength gain equation reported by Hayati et al. 2008 in “Proc., Geotechnical Earthquake Engineering and Soil Dynamics IV,” to produce a MEVR versus deposit resistance correction relationship. This new corrective relationship is applied to create liquefaction resistance curves based on VS, standard penetration test blow count, and cone tip resistance for sands of various ages (or MEVRs). Because age of natural soil deposits is usually difficult to accurately determine, MEVR appears to be a promising alternative.  相似文献   

6.
The cyclic liquefaction resistance of intact medium dense specimens of sands and silts obtained from offshore platform sites was compared to that of specimens reconstituted to the same values of shear wave velocity. The shear wave velocity was measured using a new system that is comprised of torsional piezoelectric ceramic ring transducers mounted in a triaxial cell, a multiwave measuring device, and special watertight connectors. The relationship between cyclic resistance ratio and the number of cycles to liquefaction Nf of intact and reconstituted specimens was compared at the same values of consolidation pressure and shear wave velocity. There was good agreement between cyclic resistance ratios of intact and reconstituted specimens with similar values of shear wave velocity if liquefaction is defined as ? 6% peak-to-peak axial strain. The results of this study support the hypothesis that the cyclic liquefaction resistance of reconstituted specimens may be restored to in situ conditions when their shear wave velocity is restored to in situ values.  相似文献   

7.
Performance-based procedures for evaluation of liquefaction potential have been shown to provide more consistent and accurate indications of the actual likelihood of liquefaction in areas of different seismicity than conventional procedures. The process of performing a complete site-specific performance-based evaluation of liquefaction potential, however, requires numerous calculations involving quantities that many geotechnical engineers are not familiar with. This paper shows how the results of complete performance-based analyses can be expressed in terms of a scalar parameter corresponding to a particular element of soil in a reference soil profile, and presents procedures for adjustment of that parameter to account for site-specific conditions that differ from those of the reference profile. The procedures are shown to closely approximate the results of complete site-specific performance-based evaluations. Engineers can then use mapped values of the scalar parameter, along with the recommended adjustment procedure, to realize the benefits of a performance-based evaluation without having to actually perform the performance-based calculations.  相似文献   

8.
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests, loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency and effective consolidation pressure is chosen as 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio causing initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw conclusions on the effect of the extreme void ratios and void ratio range on the liquefaction resistance of various graded sands.  相似文献   

9.
The paper deals with an experimental study of the undrained cyclic behavior of a natural coarse sand and gravel deposit located in Gioia Tauro, a town situated on the continental side of the Messina Strait in Italy. The study was conducted through cyclic undrained triaxial tests carried out on both undisturbed and reconstituted samples. Undisturbed samples were recovered by an in situ freezing technique and the sample quality was carefully assessed. Reconstituted samples were prepared by using two different reconstitution methods, namely air pluviation (AP) and water sedimentation (WS), and tested under the same in situ initial relative density and effective overburden stress. Tests were carried out on both isotropically and anisotropically consolidated specimens. The results obtained from this study provide direct evidence that cyclic liquefaction resistance obtained from water sedimented samples closely approximates that exhibited by undisturbed samples in both isotropically and anisotropically consolidated tests. Conversely, AP leads to a marked underestimation. Since the investigated deposit is considered to have been formed by the marine water environment, these results can be regarded as proof that WS closely replicates the in situ fabric of the investigated deposit allowing the substitution of the expensive undisturbed samples with their reconstituted counterparts. Anisotropically consolidated specimens respectively exhibit “cyclic liquefaction” or “cyclic mobility” depending on whether or not they are loaded under the shear stress reversal mode.  相似文献   

10.
Realistic predictions of dynamic soil–structure interaction problems require appropriate constitutive models for the characterization of soils and interfaces. This paper presents a unified model based on the disturbed state concept (DSC). The parameters for the models for the Nevada sand, and sand–metal interface are obtained based on available triaxial test data on the sand and interfaces. The predicted stress–strain–pore water pressure behavior for the sand using the DSC model is compared with the test data. In addition, a finite element procedure with the DSC model, based on the generalized Biot’s theory, is used to predict the measured responses for a pile (aluminum) sand foundation problem obtained by using the centrifuge test. The predictions compared very well with measured pore water pressures. The DSC model is used to identify microstructural instability leading to liquefaction. A procedure is proposed to apply the proposed method for analysis and design for dynamic response and liquefaction.  相似文献   

11.
Resistance against earthquake-related liquefaction is usually assessed using relationships between an index of soil strength such as normalized cone tip resistance and the cyclic resistance ratio (CRR) developed from observed field performance. The alternative approach based on laboratory testing is rarely used, mainly because of the apprehension that laboratory results may not reflect field behavior since the quality of laboratory data is often compromised by sampling disturbance. In this study, a database of laboratory data obtained mainly from cyclic testing of frozen (undisturbed) samples and in situ index measurements from near sampling locations comprised of cone tip resistance, qc, and shear wave velocity, Vs, have been assembled. These data indicate that neither normalized cone tip resistance nor normalized shear wave velocity individually correlate well with laboratory-measured CRR. However, the ratio of qc to the small strain shear modulus, G0, relates reasonably with CRR via separate correlations depending on geologic age. The derived qc/G0-CRR relationships were also found to be consistent with earthquake field-performance case histories.  相似文献   

12.
The BART Transbay Tube (TBT) is an immersed cut-and-cover subway tunnel that runs from Oakland to San Francisco, California. The loose sand and gravel backfills placed around the tunnel are considered to be liquefiable, and the clays under the backfill are soft in some zones along the alignment. These conditions could potentially result in uplift of the tunnel during strong earthquake shaking. This paper describes centrifuge model tests performed to verify numerical methods used to assess the stability and to evaluate the potential uplift mechanisms of the TBT. The observed mechanisms of uplift were a ratcheting mechanism (sand migrating under the tunnel with each cycle of relative movement), a pore water migration mechanism (water flowing under the tunnel), and a bottom heave mechanism, involving soft soils below the base of the trench. A fourth potential mechanism, viscous flow of liquefied soil, was not observed. The volume of the tunnel relative to the volume of the trench and the densities and permeabilities of the nonhomogeneous backfill were important parameters affecting the uplift of the tunnel. From the experiments reported here and analyses reported by the designers, it was concluded that the magnitude of uplift is limited and, hence, that an expensive ground improvement project to densify the backfill was unwarranted.  相似文献   

13.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

14.
A liquefaction potential map of the peninsula of Charleston, S.C., is presented in this paper. Liquefaction potential is expressed in terms of the liquefaction potential index developed by Iwasaki et al. and calculated using 44 cone penetration test profiles. The cone profiles are supplemented with information from the 1:24,000 scale geologic map by Weems and Lemon, several first-hand accounts of liquefaction and ground deformation that occurred during the 1886 Charleston earthquake, and liquefaction probabilities determined by Elton and Hadj-Hamou based on standard penetration tests. Nearly all of the cases of liquefaction and ground deformation occurred in the Holocene to late Pleistocene beach deposits that flank the higher-ground sediments of the Wando Formation. To match the observed field behavior, a deposit resistance correction factor of 1.8 is applied to cyclic resistance ratios calculated for the 100,000-year-old Wando Formation. No corrections are needed for the younger deposits. In additional to 1886 field behavior, the deposit resistance corrections are supported by ratios of measured to predicted shear-wave velocity.  相似文献   

15.
Sand dilates with shearing at a rate that increases with increasing relative density (DR) and decreases with increasing effective confining stress (σc′). The peak friction angle of a sand depends on its critical-state friction angle and on dilatancy. In this paper, we develop a simple correlation between peak friction angle, critical-state friction angle, and dilatancy based on triaxial compression and plane-strain compression test data for sand for a range of confining pressures from very low levels to approximately 196 kPa.  相似文献   

16.
A constitutive model based on the disturbed state concept (DSC) is proposed for stress-deformation and liquefaction response of interfaces in dynamic soil-structure interaction problems. The model parameters are determined by using comprehensive test data for Ottawa sand–concrete (medium roughness) interfaces by using the cyclic multidegree of freedom device. The model is validated by comparing the finite element predictions with the test data used for the determination of parameters and independent test not used for finding the parameters. A procedure based on the critical disturbance for the identification of liquefaction in the interfaces is proposed. It is found that the liquefaction in the interface can occur earlier than that in the surrounding sand. The DSC model can provide a realistic characterization of the interface behavior and can be used in analysis and design of dynamic soil-structure interaction problems.  相似文献   

17.
Small-scale tests were carried out on a monopile and fin piles to determine the effect the length of fins had upon the lateral displacement of cyclically loaded piles. A variety of loading conditions were applied to model piles in a dense sand by using a mechanical loading system. Ten thousand cycles were used in each test to represent 20 years of environmental loading on offshore structures. Variables included the magnitude, frequency, and direction of the load; the type of pile tip; and the length of the fins. The reduction in pile head displacement was used as a measure of the efficiency of the fins. The tests show that the fins reduced the lateral displacement by at least 50% after 10,000 cycles.  相似文献   

18.
This paper presents the results of a series of plain-strain model tests carried out on both clean sand and oil-contaminated sand loaded with a rigid strip footing. The objectives of this study are to determine the influence of oil-contaminated sand on the bearing capacity characteristics and the settlement of the footing. Contaminated sand layers were prepared by mixing the sand with an oil content of 0–5% with respect to dry soil to match the field conditions. The investigations are carried out by varying the depth and the length of the contaminated sand layer and the type of oil contamination. A plain-strain elastoplastic theoretical model with an interface gap element between footing and the soil is carried out to verify the test results of the model. It is shown that the load-settlement behavior and ultimate bearing capacity of the footing can be drastically reduced by oil contamination. The bearing capacity is decreased and the settlement of the footing is increased with increasing the depth and the length of the contaminated sand layer. The agreement between observed and computed results is found to be reasonably good in terms of load-settlement behavior and effect of oil contamination on the bearing capacity ratio. A comparison between the model results and the prototype scale (B = 1.0?m) results are also studied.  相似文献   

19.
This paper presents a state-dependent constitutive model for sand formulated within the critical-state framework and its implementation into a numerical analysis (FLAC3D) program. The implemented model was verified by using drained triaxial results on sands. The proposed model is shown to capture the stress path dependent behavior of sand over a wide range of densities and confining pressures well based on a unique set of parameters. Numerical simulations of the behavior of a micropile under vertical loading shows that the side and tip resistance, and thus the total resistance of the pile, are functions of the “in situ state” of soil as defined by the state parameter ψ = e-ec in which e is the void ratio and ec the void ratio at the critical state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号