首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximate analysis method is proposed to determine the blast resistance of fiber-reinforced polymer (FRP)-strengthened masonry walls. The method relates the static to dynamic response by incorporating the strain rate effect on the material strength and a dynamic load factor for the applied peak load. Based on the method, 18 full-scale masonry walls reinforced with three different FRP systems were designed and subjected to field explosions, using charges of 27-ton TNT in one test and 5-ton TNT in the other. For each test, the walls were placed at three different standoff distances and orientations to the blast source. The response of the strengthened walls under blast was monitored by high-speed data acquisition systems. Post-test observations indicated no visible damage, crack, or debonding in any of the walls, thus confirming the effectiveness of the FRP retrofit technique in blast protection. The data presented are valuable for validation of analytical or numerical models.  相似文献   

2.
Collapse of unreinforced masonry (URM) walls is the cause of many casualties during extreme loading events. The objective of this current research was to investigate effective and practical approaches for strengthening URM block walls with openings to resist extreme out-of-plane loads. Five full-scale masonry block walls were constructed. The walls had different opening configurations such as a single center window, one window off center, two windows, a wide window and a door. The walls were tested when subjected to uniformly distributed lateral load up to failure. The walls were then strengthened using carbon fiber-reinforced polymer laminate strips and then retested. The walls were set up in a vertical test frame and were subjected to cyclic out-of-plane distributed pressure using an airbag. Failure of the unstrengthened URM block wall was along the mortar joints. In the strengthened walls, failure occurred in the mortar joints as well as in concrete blocks near the carbon strips. The lateral load carrying capacity of the strengthened walls was found to be significantly higher than that of the unstrengthened walls and had much more ductile performance.  相似文献   

3.
This paper presents the results of an analytical investigation of one-way unreinforced masonry (URM) walls retrofitted with externally anchored steel studs and subjected to blast loads. Using the wall geometrical and material properties, deflected shape, and crack pattern as input, a nonlinear model is developed to predict the inward force-displacement relationship of the retrofitted walls. In addition, using a rigid body analysis, a simple bilinear force-displacement relationship is developed to model the outward force-displacement relationship of the walls. Utilizing these two force-displacement relationships (resistance functions), a generalized single-degree-of-freedom (SDOF) model is developed to capture the nonlinear out-of-plane dynamic response of the retrofitted walls under blast loads. The SDOF model captured the experimentally observed displacement responses of the tested walls with reasonable accuracy. The model was also used to investigate the influence of block thickness, wall slenderness ratio, blast load intensity, and blast pulse shape on the out-of-plane dynamic response of retrofitted walls. The results demonstrated that anchored steel-stud systems could significantly enhance the out-of-plane capacity of the retrofitted walls by increasing their out-of-plane capacity and reducing their displacement.  相似文献   

4.
The most widely used terrorist tactic is the improvised explosive device, which can range in size from hand-held to truck-size. Most casualties and injuries sustained in such an attack are not caused by the blast itself, but rather by the disintegration and fragmentation of walls, the shattering of windows, and by nonsecured objects propelled at high velocities by the blast. Since 1995, the Air Force Research Laboratory at Tyndall Air Force Base has investigated methods of retrofitting wall structures to better resist blast loads from external explosions. This paper summarizes results from recent tests that involve an innovative use of a sprayed-on polymer to increase blast resistance of unreinforced concrete masonry walls. Test methodology, retrofit materials considered, material properties, mechanisms of effectiveness, and research challenges are discussed.  相似文献   

5.
A full-scale blast test was conducted on a structure representing a mailroom, constructed with unreinforced masonry walls. The four walls were retrofitted with different quantities of glass fiber-reinforced polymers (GFRP) on the outside face to increase their resistance to the blast load. In addition, shotcrete was added to the inside face of the two long walls. The objective of this test was to validate a method of analysis that can be used to design effective retrofit techniques to contain blast loads. A blast load was produced by the detonation of a 0.91?kg (2?lb) equivalent TNT charge placed near the center of the room. Instrumentation on individual walls monitored the blast pressure and the consequent displacement and velocity of the walls. Although the walls sustained extensive internal damage and plastic deformation, the retrofit was able to withstand the blast load. It was observed through the postmortem analysis of the test that the stiffness of the walls is completely lost at an early stage and only membrane action of the GFRP provides structural resistance.  相似文献   

6.
Six full-scale concrete masonry walls were tested under free-field blast loading using different charge sizes up to 250?kg of ammonium nitrate/fuel oil (ANFO) and at a constant stand-off distance of 15.0?m to cover a wide range of expected damage levels. Five walls were retrofitted with cold-formed steel studs anchored to the wall backs and were compared to the remaining as-built wall. Significant enhancement to the out-of-plane blast resistance of the retrofitted walls, compared to the as-built wall, was observed. This enhancement is attributed to the development of a tied-arch action in the retrofitted walls in which the masonry forms a compression strut while the steel studs serve as the tie. A simplified single-degree-of-freedom model was used to analyze the experimental results, and the model results agreed well with the observed damage levels and the resistances of the walls. In addition, the effectiveness of the proposed retrofit technique was evaluated in terms of strength enhancement and wall deflection reduction. The test results were also compared with those predicted by available blast damage assessment models for unreinforced masonry walls. However, it was found that available models, which do not account for the tied-arch mechanism, greatly underestimate the actual blast capacity of the retrofitted walls because of the assumption of a tensile flexural failure mode. Additionally, the proposed retrofit technique shifts the mode of failure from flexure to shear.  相似文献   

7.
In this study, two reinforced concrete frames with hollow clay tile masonry infill walls, retrofitted with diagonally applied carbon fiber-reinforced polymer (CFRP), which were tested previously, were analytically investigated. A simple material model for the masonry infill wall strengthened with CFRP is suggested. The lateral strength of each rehabilitated frame was obtained by pushover analysis of four different models using a commercially available finite-element program, and the results were compared with the test results. We also determined the lateral strength of the CFRP-applied masonry infill walls, and compared the results with the results obtained from existing analytical models. Drift capacity of the masonry infill walls strengthened with CFRP was also investigated, and the drift capacity of the masonry infill walls strengthened with diagonally applied CFRP was recommended. It is concluded that the strength of the masonry infilled frames strengthened with diagonally applied CFRP can be satisfactorily predicted with the suggested procedure. The ultimate drift capacity of the masonry infill walls strengthened with diagonally applied CFRP strips was conservatively predicted to be 1.0%.  相似文献   

8.
A blast test was conducted inside a conventional, two-story, unreinforced, brick, bearing wall building scheduled to be demolished. A credible explosive device was placed inside the building on the ground floor and was detonated to investigate whether or not the building would collapse. The measured blast pressures, key material properties of the structure, and the structural configuration were used as input parameters to a single-degree-of-freedom software program, the single-degree-of-freedom blast effects design spreadsheet (SBEDS), commonly used in the United States to model unreinforced masonry walls subjected to blast loading. The net effect of overburden loads on the ground-floor bearing walls, including uplift by blast pressures on the ground-floor ceiling, was considered when investigating the validity of an appropriate resistance function (available in SBEDS) that defines out-of-plane bearing wall response. Comparisons were made between analytical and experimental permanent wall deflections and two alternatives, a simple displacement-based criterion and a resistance criterion, were used to estimate the building’s state relative to its estimated collapse limit state. It was found that SBEDS was able to model the experimental deflections quite well if effective input parameters were carefully considered. As a result, analytical and experimental determinations of the structure’s state were also in good agreement.  相似文献   

9.
This paper first describes the current state of analysis for the response of unreinforced concrete masonry walls subjected to lateral uniform pressure. The formulation is based on the initial elastic response, the subsequent initiation of cracks and the nonlinear rocking response, and the eventual large displacement and potential collapse. The necessary equations are developed for these phases in the form of a resistance function. The paper then incorporates membrane retrofit materials to strengthen the wall’s resistance to lateral pressure, and develops the necessary resistance function equations. In blast tests, membrane retrofit unreinforced masonry walls have experienced severe cracking and large displacements without collapse. This is of high interest to the Department of Defense, the protection of diplomatic facilities, and the construction industry impacted by hurricanes and other high wind events. The paper concludes with examples that demonstrate application of membrane retrofits indeed increase the resistance of the wall to lateral pressure.  相似文献   

10.
Recent earthquakes have shown the vulnerability of unreinforced masonry (URM) buildings, which have led to an increasing demand for techniques to upgrade URM buildings. Fiber reinforced polymer (FRP) can provide an upgrading alternative for URM buildings. This paper presents results of dynamic tests investigating the in-plane behavior of URM walls upgraded with FRP (URM-FRP). These tests represent pioneer work in this area (dynamic and in-plane). Five half-scale walls were built, using half-scale brick clay units, and upgraded on one face only. Two moment/shear ratios (1.4 and 0.7), two mortar types (M2.5 and M9), three composite materials (carbon, aramid, and glass), three fiber structures (plates, loose fabric, and grids), and two upgrading configurations (diagonal “X” and full surface shapes) were investigated. The test specimens were subjected to a series of synthetic earthquake motions with increasing intensities on a uniaxial earthquake simulator. The tests validate the effectiveness of the one side upgrading: the upgrading technique improved the lateral resistance of the URM walls by a factor ranging from 1.3 to 2.9; however, the improvement in the lateral drift was less significant. Moreover, no uneven response was observed during the test due to the single side upgrading. Regarding the upgrading configurations, the bidirectional surface type materials (fabrics and grids) applied on the entire surface of the wall (and correctly anchored) can help postpone the three classic failure modes of masonry walls: rocking (“flexural failure”), step cracking, and sliding (“shear failures”). Additionally, in some situations, they will postpone collapse by “keeping the bricks together” under large seismic deformations. On the other hand, the diagonal “X” shape was less successful and premature failure was developed during the test.  相似文献   

11.
This paper investigates strengthening masonry walls using glass-fiber reinforced polymer (GFRP) sheets. An experimental research program was undertaken. Both clay and concrete brick specimens were tested, with and without GFRP strengthening. Single-sided strengthening was considered, as it is often not practicable to apply the reinforcement to both sides of a wall. Static tests were carried out on six masonry panels, under a combination of vertical preload, and in-plane horizontal shear loading. The mechanisms by which load was carried were observed, varying from the initial, uncracked state, to the final, fully cracked state. The results demonstrate that a significant increase of the in-plane shear capacity of masonry can be achieved by bonding GFRP sheets to the surface of masonry walls. The experimental data were used to assess the effectiveness of the GFRP strengthening, and suggestions are made to allow the test results to be used in the design of sheet GFRP strengthening for masonry structures.  相似文献   

12.
In this study, carbon fiber-reinforced polymer (CFRP) sheets were examined as a means to strengthening existing masonry walls allowing for efficient creation of doors, windows, and passage openings. The research reported here deals with eight masonry walls made with concrete blocks, subjected to three-point quasistatic loading. The parameters examined include the reinforcement configuration and their amount. While CFRP sheets were used as external reinforcement, companion studies were carried out with conventional steel rebars. Test results indicate an increase of 180% in shear strength of the reinforced walls as compared to reference unreinforced walls. Load-deflection relationships indicate that the combined plain masonry and CFRP laminate system possessed some nonlinear deformability. The use of CFRP laminates on the walls was found to have an influence on the mode of failure. Anchoring the CFRP laminates at both support regions helped in using a larger portion of the strength of the laminates. The reinforced walls exhibited diagonal shear cracks that developed at a much slower rate and were ultimately accompanied by the peeling off of the CFRP laminates.  相似文献   

13.
Earthquake damage to unreinforced masonry buildings has shown the vulnerability of perimeter walls to out-of-plane failure. This paper describes a study that was carried out to develop and test innovative fiber reinforced polymer (FRP) rehabilitation techniques that meet the stringent requirements for strengthening historical buildings and to be cost-effective alternatives applicable to other existing masonry structures. Unobtrusive FRP rehabilitation techniques that utilize flexible carbon fiber composite cables, mounted near the surface of the fa?ade walls in epoxy-filled grooves in the bed and head joints, were developed. Ten full size walls were constructed of clay bricks and retrofitted using the developed FRP rehabilitation techniques. The test results demonstrated the high efficiency of the rehabilitation techniques under both monotonic and quasistatic cyclic loadings. Significant increases in ultimate capacities, energy absorption, and deformability were achieved for various reinforcing schemes compared to the behavior of the unreinforced walls.  相似文献   

14.
Recent earthquakes have produced extensive damage in a large number of existing masonry buildings, demonstrating the need for retrofitting masonry structures. Externally bonded carbon fiber is a retrofitting technique that has been used to increase the strength of reinforced concrete elements. Sixteen full-scale shear dominant clay brick masonry walls, six with wire-steel shear reinforcement, were retrofitted with two configurations of externally bonded carbon fiber strips and subjected to shear loading. The results of the experimental program showed that the strength of the walls could be increased 13–84%, whereas, their displacement capacity increased 51–146%. This paper presents an analysis of the experimental results and simple equations to estimate the cracking load and the maximum shear strength of clay brick masonry walls, retrofitted with carbon fiber.  相似文献   

15.
Concrete masonry unit walls subjected to blast pressure were analyzed with the finite element method, with the goal of developing a computationally efficient and accurate model. Wall behavior can be grouped into three modes of failure, which correspond to three ranges of blast pressures. Computational results were compared to high-speed video images and debris velocities obtained from experimental data. A parametric analysis was conducted to determine the sensitivity of computed results to critical modeling values. It was found that the model has the ability to replicate experimental results with good agreement. However, it was also found that, without knowledge of actual material properties of the specific wall to be modeled, computational results are not reliable predictors of wall behavior.  相似文献   

16.
The behavior of seven one-half scale masonry specimens before and after retrofitting using fiber-reinforced polymer (FRP) is investigated. Four walls were built using one-half scale hollow clay masonry units and weak mortar to simulate walls built in central Europe in the mid-20th century. Three walls were first tested as unreinforced masonry walls; then, the seismically damaged specimens were retrofitted using FRPs. The fourth wall was directly upgraded after construction using FRP. Each specimen was retrofitted on the entire surface of a single side. All the specimens were tested under constant gravity load and incrementally increasing in-plane loading cycles. The tested specimens had two effective moment/shear ratio, namely, 0.5 and 0.7. The key parameter was the amount of FRP axial rigidity, which is defined as the amount of FRP reinforcement ratio times its E modulus. The single-side retrofitting/upgrading significantly improved the lateral strength, stiffness, and energy dissipation of the test specimens. The increase in the lateral strength was proportional to the amount of FRP axial rigidity. However, using high amount of FRP axial rigidity led to very brittle failure. Finally, simple existing analytical models estimated the ultimate lateral strengths of the test specimens reasonably well.  相似文献   

17.
In spite of our understanding and knowledge of the properties of concrete masonry as a material, shrinkage continues to be a problem affecting the performance of concrete masonry walls. A case study is presented which suggests that the behavior of concrete masonry walls subjected to the shrinkage of units is not completely understood. The paper discusses causes in material standards, design specifications, manufacture and construction practice which may contribute to shrinkage cracking of concrete masonry walls.  相似文献   

18.
The research work reported here investigates the out-of-plane flexural behavior of masonry walls reinforced externally with glass fiber reinforced polymer (GFRP) sheets and subjected to cyclic loading. A full-scale test program consisting of eight wall specimens was conducted. Nine tests were performed, in which three parameters were studied. These included the level of compressive axial load, amount of internal steel reinforcement, and amount of externally bonded GFRP sheet reinforcement. Of the three parameters studied, varying the amount of GFRP sheets was the only parameter that significantly affected the behavior of the walls. The GFRP sheet reinforcement governed the linear response of the bending moment versus centerline deflection hysteresis. Increasing or decreasing the amount of GFRP sheet reinforcement either increased or decreased both the wall stiffness and the ultimate strength, respectively. Except for visible cracks, the walls maintained their structural integrity throughout the out-of-plane cyclic loading. The unloading/reloading paths for successive loading cycles were similar, indicating little degradation. Thus, the general behavior of the walls was very predictable. The system, therefore, could be used to advantageously rehabilitate older masonry structures that are inadequately reinforced to withstand seismic events. A simple model of the behavior is also presented to allow for the evaluation of the strength and deformation characteristics of these elements.  相似文献   

19.
This paper presents the results of an experimental study on the seismic performance of axially loaded reinforced concrete (RC) walls with boundary elements confined by limited transverse reinforcement. These specimens were initially subjected to axial compression loading and cyclic lateral loading to failure, and subsequently repaired and subjected to loading again. The test specimens include two low-rise walls of aspect ratio 1.125 and two medium-rise walls of aspect ratio 1.625. Results show that significant drift capacities were achieved from the strengthened walls. The performance of the repaired walls was similar to the original walls before repair in terms of the flexural behavior, shear strength, and ductility capacities. While the fiber-reinforced polymer (FRP) anchorage may undergo premature failure, it however failed only after the peak lateral strength of the repaired wall was attained. This paper demonstrates that repair of damaged RC walls using FRP is able to restore the performance of damaged RC walls while also serving as repair method of relative ease.  相似文献   

20.
The objective of this paper is to assess the out-of-plane flexural performance of masonry walls that are reinforced with glass fiber-reinforced polymers (GFRPs) rods, as an alternative for steel rebars. Eight 1?m×3?m full-scale walls were constructed using hollow concrete masonry units and tested in four-point bending with an effective span of 2.4 m between the supports. The walls were tested when subjected to increasing monotonic loads up to failure. The applied loads would represent out-of-plane loads arising from wind, soil pressure, or inertia force during earthquakes. One wall is unreinforced; another wall is reinforced with customary steel rebars; and the other six walls are reinforced with different amounts of GFRP reinforcement. Two of the GFRP-reinforced walls were grouted only in the cells where the rods were placed to investigate the effect of grouting the empty cells. The force-deformation relationship of the walls and the associated strains in the reinforcement were monitored throughout the tests. The relative performance of different walls is assessed to quantify the effect of different design variables. The range of GFRP reinforcement ratios covered in the experiments was used to propose a capacity diagram for the design of FRP-reinforced masonry walls similar to that of reinforced concrete elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号