首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

2.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

3.
Amperometric detection of tolazoline (TL) was carried out on a gold nanoparticles (AuNPs)/poly-o-aminothiophenol (PoAT)-modified electrode by a molecular imprinting technique and electropolymerization method. The modification procedure was characterized via electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The recognition between the imprinted sensor and target molecule was observed by measuring the variation of amperometric response of the oxidation-reduction probe, K3Fe(CN)6 on electrode. Under the optimal experimental conditions, the peak currents were proportional to the concentrations of tolazoline in two ranges of 0.05-5.0 μg mL−1 and 5.0-240 μg mL−1 with the detection limit of 0.016 μg mL−1. Meanwhile the prepared sensor showed sensitive and selective binding sites for tolazoline. The enhancement of sensitivity was attributed to the presence of AuNPs which decreased the electron-transfer impedance.  相似文献   

4.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

5.
Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H2O2 were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H2O2, the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 104 to 1010 cfu mL−1, with a detection limit of 2.3 × 103 cfu mL−1 (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.  相似文献   

6.
The aim of our study was to evaluate polygalacturonase (PG) production and characterization by Aspergillus niger ATCC 9642. The maximum PG activity (51.82 U/mL) was obtained using pectin, l-asparagine, and, iron sulphate concentrations of 32 g/L, 2 g/L, 0.06 g/L and 1.0 g/L, respectively; 180 rpm of stirring rate, 25 °C and an initial pH of 4.0. The kinetic study showed that the highest enzyme activity was achieved at 27 h of fermentation. The evaluation of the optimum pH and temperature permitted us to observe that highest PG activities were achieved at 37 °C and pH of 5.5. The enzymatic extract presented higher stability at 55 °C and pH of 5.0. The results showed that at low temperatures the enzyme extract kept the initial activity until 40 days of storage. The experimental design methodology permitted us to optimize the PG activity and an important aspect of this study is the characterization of the PG in terms of optimum temperature and pH using experimental design technique and also, the characterization of enzyme stability at low temperature. Such studies are very scarce in the literature and should be helpful to understand the true potentialities of pectinases in its industrial applications.  相似文献   

7.
An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN)63−/Fe(CN)64− as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 × 103 to 3.0 × 107 cfu mL−1 with the detection limit of 1.0 × 103 cfu mL−1. With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples.  相似文献   

8.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

9.
The simultaneous enzymatic saccharification and fermentation (SSF) of corn meal using immobilized cells of Saccharomycescerevisiae var. ellipsoideus yeast in a batch system was studied. The yeast cells were immobilized in Ca-alginate by electrostatic droplet generation method. The process kinetics was assessed and determined and the effect of addition of various yeast activators (mineral salts: ZnSO4 · 7H2O and MgSO4 · 7H2O, and vitamins: Ca-pantothenate, biotin and myo-inositol) separately or mixed, was investigated. Taking into account high values of process parameters (such as ethanol concentration, ethanol yield, percentage of the theoretical ethanol yield, volumetric productivity and utilized glucose) and significant energy savings the SSF process was found to be superior compared to the SHF process. Further improvement in ethanol production was accomplished with the addition of mineral salts as yeast activators which contributed to the highest increase in ethanol production. In this case, the ethanol concentration of 10.23% (w/w), percentage of the theoretical ethanol yield of 98.08%, the ethanol yield of 0.55 g/g and the volumetric productivity of 2.13 g/l·h were obtained.  相似文献   

10.
Ali Parsa 《Polymer》2008,49(17):3702-3708
Oxidative electropolymerization of aniline (Ani) in phosphoric acid (H3PO4) on composite 2B pencil graphite was accomplished using selected inorganic salts as supporting electrolytes. These salts determined the degree of conductivity of polyaniline (PAni) formed. The conductivity was in the order of CaCl2 > KCl > ZnCl2 > ZnSO4 > Ca3(PO4)2. The three pairs of redox peaks in the voltammogram of PAni formed in the presence of 0.06 M Ca3(PO4)2 and 0.2 M ZnSO4 have shifted 300 mV to the negative potential. The shifting of peaks is strongly influenced by type of anions' presence in the salts. However, the nature of the available cations had no significant effect. The negative shifts of redox peaks were exploited to facilitate the electrocopolymerization of Ani and ortho-phenylenediamine (oPD). The formation of the poly(Ani-co-oPD) was confirmed by the FTIR spectra.  相似文献   

11.
Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 Å. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g−1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 × 10−10 and 0.9 × 10−10 cm2 s−1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.  相似文献   

12.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

13.
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO4·7H2O showed significantly positive effects, whereas KH2PO4 and CaCl2·2H2O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO4·7H2O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.  相似文献   

14.
Extraction of the fresh flowers of Michelia champaca L. with liquid CO2 provided a floral extract in 1.0 ± 0.04 wt% yields. The extract so obtained contains far less waxes and is organoleptically very superior. Similarly extraction with pentane gave the so-called ‘Concrete’ in 1.58 ± 0.06 wt%. While the concrete contains co-extracted floral waxes that make it unsuitable for blending with other perfumes, direct extraction with CO2 is an expensive process mainly due to low bulk density of flowers and their availability during short flowering season. On the other hand, fractionation of the concrete with liquid CO2 to separate the waxy components has provided solvent and almost wax free fractions. The duration of extractive fractionation has been optimized for selective extraction with liquid CO2 at 62 bar. These liquid CO2 fractions of concrete and liquid CO2 extract of flowers were analyzed by GC and GC/MS and their composition compared with that of concrete and partially de-waxed absolute obtained in the conventional way. The major fragrance compounds enriched in the direct liquid CO2 extract were methyl benzoate (11.5 ± 0.8%), phenyl ethyl alcohol (5.0 ± 0.6%), phenyl acetonitrile (10.4 ± 1.1%), indole (1.2 ± 0.3%), methyl anthranilate (1.3 ± 0.5%), E-β-ionone (1.5 ± 0.4%), and Z-methyl jasmonoate (1.0 ± 0.3%). The liquid CO2 fractionation of concrete is a practical process and the first fraction is comparable with direct liquid CO2 flower extract in terms of composition of the major compounds.  相似文献   

15.
Instant active dry baker's yeast is a well-known product widely used for leavening of bread, produced by fermentation, and usually dried by hot air to 94-96% dry matter content. Multi-stage fluidized bed drying process is a commercial effective method for yeast drying. In this work, optimum operating parameters of an industrial continuous fluidized bed dryer for the production of instant active dry yeast were investigated. The dryer contained four zones separated with moving weirs. The operating conditions such as temperature, loading rate of compressed yeast granules, and hot air humidity had direct effects on both yeast activity and viability. The most important factors that affected the quality of the product were loading rate and the operational temperature in each zone on the bed. Optimization was performed for three loading rates of the feed to the dryer, using response surface methodology for the experimental design. The most significant factor was shown to be the loading rate with mean fermentation activity values of 620, 652, and 646 cm3 CO2/h for 300, 350, and 400 kg/h loading rates, respectively. The data analysis resulted in an optimal operating point at a loading rate of 350 kg/h and temperatures of zones 1, 2, 3, and 4 controlled at 33, 31, 31, and 29 °C, respectively. The best activity value was predicted as 668 ± 18 cm3 CO2/h, and confirmation experiments resulted in 660 ± 10 cm3 CO2/h. At the same operating point, the average viability of the cells was predicted as 74.8 ± 3.7% and confirmed as 76.4 ± 0.6%. Compared with the normal operating conditions at the plant, the optimization resulted in more than 12% and 27% improvement in the yeast activity and viability, respectively.  相似文献   

16.
The possibility of using the leaves of Cordia verbenacea as a new source of natural antioxidant compounds was investigated. In the present work, extracts from C. verbenacea were obtained using different extraction methods: supercritical fluid extraction (SFE), Soxhlet (SE), hydrodistillation and maceration, with the objective to evaluate the methods in terms of yield and antioxidant potential. The high-pressure technique was applied using pure CO2 and CO2 with co-solvent at different temperatures and pressures (30, 40 and 50 °C and 100, 200, and 300 bar). Organic solvents with different polarities were used to obtain extracts by low-pressure extraction processes. The extracts were evaluated according to their antioxidant activity using total phenolic content, scavenging abilities on DPPH radical, total antioxidant activities (ABTS•+), superoxide anion radical-scavenging (O2) and protection against lipid peroxidation in vitro (LPO). Ethyl acetate fraction obtained by maceration and extract isolated by SE using 25% aqueous mixture of ethanol possessed the highest scavenger activity against DPPH radical (IC50 = 9.2 ± 0.4 μg/ml, IC50 = 27.4 ± 0.1 μg/ml, respectively). The SFE with 8% ethanol as a co-solvent produced extracts with distinguished increase in the antioxidant activity. The Soxhlet extract with ethyl acetate exhibited a strong reduction of lipid peroxidation (IC50 = 209 ± 3 μg/ml) value comparable to the standard rutin (IC50 = 203 ± 2 μg/ml). The results indicate that extracts of C. verbenacea have important potential as a source of bioactive compounds with antioxidant activity.  相似文献   

17.
Piezoceramic compositions [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr1−yTiy)]0.98O3 with y = 0.46-0.50 were synthesized by solid state route to study the effect of Zr/Ti ratio on crystal structure, microstructure, piezoelectric and dielectric properties. Calcination was performed at 1060 °C. The specimens were sintered at 1280 °C for 1 h. X-ray diffraction studies indicate the co-existence of tetragonal and rhombohedral perovskite phases in these compositions. Microstructural analysis showed the dense and uniform microstructure for [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr0.52Ti0.48)]0.98O3. This composition was resulted in optimum values of properties viz. charge constant (d33 = 301 × 10−12 C/N), voltage constant (g33 = 33.7 × 10−3 V m/N), product of piezoelectric charge constant and voltage constant (d33 × g33 = 10.12 × 10−12 C V m/N2) and coupling factor (kp = 0.63). Results indicated that this material composition could be suitable for power harvesting and sensor applications.  相似文献   

18.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

19.
This work evaluates the volumetric mass transfer coefficient (kLa), the gas hold-up (?) and the mixing time (tm) as a function of superficial gas velocity (UG) in a flat-panel photobioreactor (PBR) with high light path. CO2 utilization efficiency and volumetric power consumption (P/V) were also evaluated. A 50 L working volume photobioreactor was developed, 0.67 m in length, 0.57 m in height and 0.15 m in width (light path). The height-width ratio was 3.8, which is lower than reported in most PBRs. Initially, experiments were performed with air and tap water (biphasic system) and, subsequently, using a Spirulina sp. culture (triphasic system: air, culture medium, cells). Minimum and maximum superficial gas velocity values were 5 × 10−5 and 8.4 × 10−3 m s−1, respectively. Maximum values for kLa and ? were 20.34 h−1 (0.0057 s−1) and 0.033 in the biphasic system, and 31.27 h−1 (0.0087 s−1) and 0.065 in the triphasic system. CO2 utilization efficiency was 30.57%. Results indicate that the hydrodynamic and mass transfer characteristics of this photobioreactor are more efficient than those reported elsewhere for tubular and other flat-plate PBRs, which opens the possibility of using PBRs with higher light paths than yet proposed.  相似文献   

20.
KSr1−xPO4:xTb3+ phosphors with various concentrations (x = 0.05, 0.06, 0.07, 0.08) of Tb3+ ions were synthesized in succession by using microwave assisted sintering. The sintering condition was set at 1200 °C for 1 h in air. The microstructural and luminescent characteristics of KSrPO4:Tb3+ phosphors were investigated and are discussed here. The XRD result shows that the prepared KSr1−xPO4:xTb3+ phosphors would have an impure phase as the Tb3+ ion increases to more than x = 0.06. The photoluminescence measurement shows that the series of the emission-state 5D4 → 7F6, 5D4 → 7F4, and 5D4 → 7F3, corresponding to the typical 4f → 4f intra-configuration forbidden transitions of Tb3+, are appeared and the major emission peak is around at 542 nm. Moreover, the maximum photoluminescence intensity is appeared when the molar concentration of Tb3+ is 0.06. The decay time value of the KSr1−xPO4:xTb3+ phosphors with x = 0.06 is about 0.27 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号