首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first internal transcribed spacer (ITS-1) of the ribosomal DNA of seven species of Trichostrongylus was sequenced. The length of ITS-1 in the different species varied from 387 to 390 bases. The G + C content of the ITS-1 sequences were approximately 42%. Little or no intraspecific variation was detected in the three species. Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus vitrinus, for which multiple isolates from different geographical regions were sequenced. In contrast, the level of ITS-1 sequence differences between species ranged from 1.3% to 5.7%. The greatest sequence differences were detected between T. tenuis, the parasite species which infects birds and the six species found in mammals. Some of the nucleotide differences occurred at sites corresponding to recognition sites for restriction endonucleases. These results are compared with previous data obtained for the second internal transcribed spacer (ITS-2). The ITS-1 data indicate that this region of rDNA may also be useful for systematic studies in trichostrongylid nematodes.  相似文献   

2.
Limited data about homicide in Australia have been published. Data on homicide occurring in the state of Victoria, Australia, are presented. Since 1945 there has been a doubling of the population and an increase in the rate of homicide. The most common method of killing was shooting, and most homicide victims were known to their assailants. Male assailants far outnumber female assailants. Men are the most frequent victims, but female victims far outnumber female assailants. The data are compared with data on other Australian states and published data from other countries.  相似文献   

3.
Wee1 tyrosine kinase regulates mitosis by carrying out the inhibitory tyrosine 15 phosphorylation of Cdc2 M-phase inducing kinase. Schizosaccharomyces pombe Wee1 is a large protein, consisting of a C-terminal catalytic domain of approximately 350 amino acids preceded by a N-terminal domain of approximately 550 residues. The functional properties of the Wee1 N-terminal domain were investigated by expressing truncated forms of Wee1 in S. pombe. Both positive and negative regulatory domains were identified. Sequences important for Wee1 function were mapped to a central region (residues 363-408). This region is not required for kinase activity or nuclear localization, suggesting it may be involved in substrate recognition. The negative regulatory domain resides in the N-terminal third of Wee1, Wee1 constructs lacking this domain are more effective at delaying mitosis than wild-type Wee1. The negative regulatory domain contains clusters of potential Cdc2 phosphorylation sites. Investigations to monitor the abundance of Wee1 mRNA and protein during the cell cycle were also carried out.  相似文献   

4.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments.  相似文献   

5.
Trichosporon asahii is a major causative agent of deep-seated trichosporonosis, which has a high mortality rate. To detect T. asahii, we have developed specific oligonucleotide primers based on the internal transcribed spacer regions of this organism's genome. Amplification products were selectively obtained from only T. asahii DNA; the DNAs of other Trichosporon species, as well as those of medically relevant yeasts such as Candida albicans, Cryptococcus neoformans, and Malassezia furfur, were not amplified. This detection system will be useful as a microbiological tool for the diagnosis of trichosporonosis.  相似文献   

6.
Ras proteins are membrane-associated guanine nucleotide-binding proteins that serve as molecular switches for signal transduction pathways in a diverse array of organisms. Various cellular factors are known to interact with Ras proteins. In order to find the novel cellular factors that are associated with Ras function, we have constructed synthetic lethal mutants of the ras1+ gene in Schizosaccharomyces pombe and used them to identify the genes that are functionally dependent on the Ras1. We first constructed S. pombe strains in which chromosomal ras1+ gene is placed under the nmt1 promoter that is regulated by thiamine. This strain shows ras1+ phenotype in the absence of thiamine, whereas it shows ras1- phenotype in the presence of thiamine. Second, we mutated the constructed strains with ultraviolet light (UV) and selected two synthetic lethal mutants that could not grow when Ras1 function was repressed (ras1-). One of the mutants, KSC3, showed a swollen cell shape, aberrant deposition of septum materials, and aberrant nuclei. The other mutant, KSC4, showed sensitivity to hyper-osmolarity when Ras1 function is absent. These mutants, however, grow normally when Ras1 is expressed (ras1+). These two novel synthetic lethal mutants of ras1 provide the means to isolate the corresponding genes that function in association with Ras1 in S. pombe. Screening of a genomic library of S. pombe complementing the mutant phenotype allowed us to identify several novel genes associated with Ras1 of S. pombe.  相似文献   

7.
Members of the kexin family of processing enzymes are responsible for the cleavage of many proproteins during their transport through the secretory pathway. The enzymes themselves are made as inactive precursors, and we investigated the activation process by studying the maturation of Krp1, a kexin from the fission yeast Schizosaccharomyces pombe. Using a cell-free translation-translocation system prepared from Xenopus eggs, we found that Krp1 is made as a preproprotein that loses the presequence during translocation into the endoplasmic reticulum. The prosequence is also rapidly cleaved in a reaction that is autocatalytic and probably intramolecular and is inhibited by disruption of the P domain. Prosequence cleavage normally occurs at Arg-Tyr-Lys-Arg102/ (primary cleavage site) but can occur at Lys-Arg82 (internal cleavage site) and/or Trp-Arg99 when the basic residues are removed from the primary site. Cleavage of the prosequence is necessary but not sufficient for activation, and Krp1 is initially unable to process substrates presented in trans. Full activation is achieved after further incubation in the extract and is coincident with the addition of O-linked sugars. O glycosylation is not, however, essential for activity, and the crucial event appears to be cleavage of the initially cleaved prosequence at the internal site. Our results are consistent with a model in which the cleaved prosequence remains noncovalently associated with the catalytic domain and acts as an autoinhibitor of the enzyme. Inhibition is then relieved by a second (internal) cleavage of the inhibitory prosequence. Further support for this model is provided by our finding that overexpression of a Krp1 prosequence lacking a cleavable internal site dramatically reduced the growth rate of otherwise wild-type S. pombe cells, an effect that was not seen after overexpression of the normal, internally cleavable, prosequence or prosequences that lack the Lys-Arg102 residues.  相似文献   

8.
RNA polymerase II purified from the fission yeast Schizosaccharomyces pombe contains 10 different species of polypeptides. Previously, we cloned and sequenced both cDNA and the genes encoding the four large subunits, Rpb1, Rpb2, Rpb3 and Rpb5. Later, other groups isolated the genes for Rpb6 and Rpb12 and cDNA for Rpb10. Here, we cloned both cDNA and the genes encoding four small subunits, Rpb7, Rpb8, Rpb10 and Rpb11. These genes were found to encode Rpb7, Rpb8, Rpb10 and Rpb11 consisting of 172 (19,103 Da), 125 (14,300 Da), 71 (8276 Da) and 123 (14,127 Da) amino acid residues, respectively. All these four subunits are homologous to the corresponding subunits of Saccharomyces cerevisiae RNA polymerase II. The rpb7 gene contains one intron, whereas the rpb8, rpb10 and rpb11 genes contain two introns. Taken altogether, the gene organization and the predicted protein sequence have been determined for all 10 subunits of the S. pombe RNA polymerase II.  相似文献   

9.
A wild-type strain, Sp972 h-, of Schizosaccharomyces pombe was mutagenized with ethylmethanesulfonate (EMS), and 2-deoxyglucose (2-DOG)-resistant mutants were isolated. Out of 300 independent 2-DOG-resistant mutants, 2 failed to grow on glucose and fructose (mutants 3/8 and 3/23); however, their hexokinase activity was normal. They have been characterized as defective in their sugar transport properties, and the mutations have been designated as std1-8 and std1-23 (sugar transport defective). The mutations are allelic and segregate as part of a single gene when the mutants carrying them are crossed to a wild-type strain. We confirmed the transport deficiency of these mutants by [14C]glucose uptake. They also fail to grow on other monosaccharides, such as fructose, mannose, and xylulose, as well as disaccharides, such as sucrose and maltose, unlike the wild-type strain. Lack of growth of the glucose transport-deficient mutants on maltose revealed the extracellular breakdown of maltose in S. pombe, unlike in Saccharomyces cerevisiae. Both of the mutants are unable to grow on low concentrations of glucose (10 to 20 mM), while one of them, 3/23, grows on high concentrations (50 to 100 mM) as if altered in its affinity for glucose. This mutant (3/23) shows a lag period of 12 to 18 h when grown on high concentrations of glucose. The lag disappears when the culture is transferred from the log phase of its growth on high concentrations. These mutants complement phenotypically similar sugar transport mutants (YGS4 and YGS5) reported earlier by Milbradt and Hoefer (Microbiology 140:2617-2623, 1994), and the clone complementing YGS4 and YGS5 was identified as the only glucose transporter in fission yeast having 12 transmembrane domains. These mutants also demonstrate two other defects: lack of induction and repression of shunt pathway enzymes and defective mating.  相似文献   

10.
11.
Among the glutamate-requiring strains of Schizosaccharomyces pombe previously described [1], glu2 and glu3 strains were both shown to lack NAD-specific isocitrate dehydrogenase. glu4 strains were shown to lack glutamine:2-oxoglutarate aminotransferase (GOGAT), and to be defective in ammonia assimilation. The regulation of GOGAT activity in wild-type cells was investigated and was consistent with GOGAT and glutamine synthetase being involved in ammonium assimilation, particularly under conditions of nitrogen limitation.  相似文献   

12.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small ( approximately 570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

13.
14.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

15.
The Antwerp database on large subunit ribosomal RNA now contains 607 complete or nearly complete aligned sequences. The alignment incorporates secondary structure information for each sequence. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available. Information from the database can be downloaded or searched on the rRNA WWW Server at URL http://rrna.uia.ac.be/  相似文献   

16.
FEN-1 proteins are a family of nucleases essential for lagging strand DNA synthesis. A gene with sequence similarity to FEN-1 protein-encoding genes, rad2 +, has been identified in Schizosaccharomyces pombe . We report the overexpression, purification, and character-ization of the putative S.pombe FEN-1 homolog, Rad2p. A GST-Rad2p fusion protein was over-expressed in Saccharomyces cerevisiae and purified to near homogeneity by GST affinity chromatography. Although Rad2p had been previously classified as a putative FEN-1 protein based on amino acid homology, there has been no biochemical evidence demonstrating flap endonuclease activity. DNA cleavage analysis of several different oligodeoxynucleotide structuresindicates that GST-Rad2p possesses both 5'-flap endonuclease and 5'-->3' double-stranded DNA exo-nuclease activities. GST-Rad2p incises a 5'-flap and a 5'-pseudo-Y structure one base 3' of the branch point in the duplex region and also degrades double-stranded DNA. This is the first report on the biochemical characterization of S.pombe Rad2p. The potential roles of Rad2p in DNA excision repair and other nucleic acid reactions are discussed.  相似文献   

17.
1. In resting cells of the fission yeast Schizosaccharomyces pombe, the uptake of calcium is stimulated by the addition of 90 mM glucose in the presence as in the absence of respiration and inhibited by Antimycin A in the absence of exogenous carbon source. This uptake therefore requires fermentative or respiratory metabolic energy. 2. The calcium uptake by S. pombe exhibits saturation kinetics and high affinity for calcium. At external pH 4.5, the apparent Km is 45 muM ca2+ 400 muM of other divalent cations exert competitive inhibitions of calcium uptake in the following order of affinities: Sr2+ greater than Mn2+ greater than Co2+ greater than Mg2+. Inhibition by KCl is also observed but is of non-competitive type and requires high concentrations of the order of 40 mM. 3. At 30 degrees C, the uptake rate of calcium is about 10-times higher at pH 8925 than at pH 4.0. An extrusion of 45Ca2+, the rate of which is estimated to be lower than one-fifth of the uptake, is observed in the presence of glucose when the external pH is acid. 4. At external pH 4.5, low concentrations of lanthanum chloride, ruthenium red and hexamine cobaltichloride are inhibitory for the uptake of calcium by the yeast cells. 5. In presence of Antimycin A, the uncouplers: NaN3, dinitrophenol, and concentrations of crobonylcyanide m-chlorophenylhydrazone higher than 80 muM inhibit the calcium uptake by glycolysing cells. In the presence of glucose, the K+ ionophore Dio-9 dnhances severalfold the uptake of calcium even at 2 degrees C. 6. It is concluded that S. pombe possess an active transport system for low concentrations of calcium. This transport seems to be dependent on an electric potential (negative inside) across the cellular membrane.  相似文献   

18.
A strain of Schizosaccharomyces pombe carrying a disrupted Na+/H+ antiporter gene (sod2::sup3-5), in addition to the common auxotrophic mutations, ade6-216, ura4-D18 and leu1-32, is highly sensitive to media adjusted to pH 6.9. Reversion analysis of this strain yielded a group of revertants capable of growth at pH 6.9. Two of the revertants elongated and failed to form colonies at pH 3.5. Genetic characterization of one of the pH-sensitive elongated strains, J227, showed the presence of two independently segregating mutations. One, pub1 (protein ubiquitin ligase 1), has recently been reported as an E3 protein ubiquitin ligase involved in cdc25 turnover. The second has been named elp3-1 (elongated at low pH). Genetic dissection of the original strain revealed that poor growth at high pH was due to the presence of the auxotrophic markers, suggesting a possible inhibitory effect of high pH on the function of permeases responsible for uptake of the necessary nutrients. Suppression of the high pH sensitivity required the presence of both the pub1-1 and elp3-1 mutations. While the pub1-1 mutation reduced the capacity of cells to tolerate relatively moderate concentrations of LiCl (3 mM) in liquid culture, it was capable of partially suppressing the extreme Li+ sensitivity caused by the sod2 disruption. Under these conditions, the growth of pub1-1 sod2::ura4 double mutant cells was improved over that of either pub1-1 or sod2::ura4 cells. The elp3-1 mutation had no effect on the Li+ tolerance in either wild-type or sod2::ura4 backgrounds. pub1-1 cells are elongated and incapable of colony formation at pH 3.5. In contrast, elp3-1 cells are elongated at pH 3.5 and pH 5.5 (the normal pH of minimal medium) but can form colonies under both conditions. J227 cells are significantly longer than either single mutant at pH 3.5 and do not form colonies but are visually similar to elp3-1 cells at pH 5.5. Complementation cloning in the J227 background yielded a genomic clone of pub1, allowing us to define the intron-exon structure of the gene. Sequences with high homology to the predicted amino acid sequence of pub1 have been identified in Saccharomyces cerevisiae (RSP5/NPI1), human (hRPF1), mouse (mNedd4), and rat (rNedd4). Based on the nature of our mutant selection, the pH-sensitive phenotype of the strains selected, and the known involvement of RSP5/ NPI1 in membrane permease turnover in S. cerevisiae, we hypothesize a role for pub1, either directly or indirectly, in regulating membrane transport processes. This is further supported by the broad range of effects that the pub1-1 mutation exerts on overall performance of cells at high and low external pH, and in the presence of toxic levels of Li+.  相似文献   

19.
Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins.  相似文献   

20.
Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid-cholesterol rafts. By reducing the cholesterol level of living cells by 60-70% with lovastatin and methyl-beta-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-beta-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号