首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.  相似文献   

2.
Agglomerated nanocrystalline ZrO2-8%Y2O3 powder prepared by spray drying was heat-treated in air at temperatures from 1 200 ℃ to 1 400 ℃ for 2 h. Scanning electron microscopy was used to examine the changes of particle size and morphology, and X-ray diffraction was used to analyze the change of constituent phases before and after the high temperature heat treatment. Nano-particle growth behavior was also investigated. The results show that the major constituent phase of the agglomerated nanocrystalline powder is tetragonal, and non-uniform growth of the nano-particles occurs while the heat treatment temperature reaches 1 300 ℃. This non-uniform growth phenomenon is related with the inhomogeneous distribution of Y2O3 in ZrO2. Nano-particles grow into micron particles through the mechanisms of gradual merging of nano-particles in some areas and sudden merging ofnano-particles in other areas.  相似文献   

3.
The effect of heat treatment on the thermal conductivity of plasma-sprayed Y2O3 stabilized ZrO2 (YSZ) and Al2O3 coatings was investigated. A heat treatment of 1300 °C in flowing argon for 50 h was found to significantly increase the thermal conductivity of the coatings when compared to measurements in the assprayed condition. Transmission electron microscopy (TEM) examination of the microstructures of the coatings in the as-sprayed and heat-treated conditions revealed that sintering of microcracks at the splat interfaces was the main cause for the increase in thermal conductivity. In the YSZ coatings, complete closure of microcracks was frequently observed. In contrast, microcrack closure in the Al2O3 coatings was characterized by the isolated necking of particles across a microcrack rather than complete closure. A model for thermal conductivity in a solid containing oriented penny-shaped cracks was used to explain the observed increase in thermal conductivity after heat treatment.  相似文献   

4.
The influence of secondary hydrogen and current on the deposition efficiency (DE) and microstructure of yttria-stabilized zirconia (YSZ) coatings was evaluated. To better understand the influence of the spray process on coating consistency, a YSZ powder, −125 +44 μm, was sprayed with nitrogen/hydrogen parameters and a 9 MB plasma gun from Sulzer Metco. DE and coating porosity, which were produced using two different spray gun conditions yielding the same input power, were compared. Amperage was allowed to vary between 500 and 560 A, and hydrogen was adjusted to maintain constant power, while nitrogen flow was kept at a fixed level. Several power conditions, ranging from 32 to 39 kW, were tested. Different injection geometries (i.e., radial with and without a backward component) were also compared. The latter was found to produce higher in-flight temperatures due to a longer residence time of the powder particles in the hotter portion of the plasma. Porosity was based on cross-sectional micrographs. In-flight particle temperature and velocity measurements were also carried out with a special sensor for each condition. Test results showed that DE and coating density could vary significantly when a different hydrogen flow rate was used to maintain constant input power. On the other hand, DE was found to correlate very well with the temperature of the in-flight particles. Therefore, to obtain more consistent and reproducible DE and microstructures, it is preferable to maintain the in-flight particle temperature around a constant value instead of keeping a constant input power by adjusting the secondary hydrogen flow rate.  相似文献   

5.
Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.%Y2O3) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of αAl2O3 and rutile TiO2 or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.  相似文献   

6.
In application as a thermal barrier coating (TBC), partially stabilized zirconia (Zr) approaches some limits of performance. To further enhance the efficiency of gas turbines, higher temperature capability and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials and concepts for application as TBC. Materials whose compositions have the pyrochlore structure or doped Zr are presented in contrast with new concepts like nanolayers between the top and bond coat, metal-glass composites, and double-layer structures. In the last concept, the new compositions are used in a combination with Zr, as a double, multi, or graded layer coating. In this case, the benefits of Zr will be combined with the promising properties of the new top coating. In the case of metal-glass composites, the paper will be focused on the influences of different plasma spraying processes on the microstructure. The performance of all these different coating systems has been evaluated by burner rig tests. The results will be presented and discussed.  相似文献   

7.
The conductivity of a thermal-barrier coating composed of atmospheric plasma sprayed 8 mass percent yttria partially stabilized zirconia has been measured. This coating was sprayed on a substrate of 410 stainless steel. An absolute, steady-state measurement method was used to measure thermal conductivity from 400 to 800 K. The thermal conductivity of the coating is 0.62 W/(m×K). This measurement has shown to be temperature independent.  相似文献   

8.
Phase composition in an air plasma-sprayed Y2O3-stabilized ZrO2 (YSZ) top coating of a thermal barrier coating (TBC) system was characterized. Both the bulk phase content and localized pockets of monoclinic zirconia were measured with Raman spectroscopy. The starting powder consisted of ∼15 vol.% monoclinic zirconia, which decreased to ∼2 vol.% in the as-sprayed coating. Monoclinic zirconia was concentrated in porous pockets that were evenly distributed throughout the TBC. The pockets resulted from the presence of unmelted granules in the starting powder. The potential effect of the distributed monoclinic pockets on TBC performance is discussed.  相似文献   

9.
Numerical (finite difference) and analytical models have been developed for the simulation of heat flow through plasma-sprayed coatings, allowing the effective thermal conductivity to be predicted as a function of microstructural parameters. The structure is assumed to be composed of lamellar material (splats), separated by (thin) pores, within which there are areas of contact (bridges). The analytical model is based on dividing the material into two regimes, within which the heat flow occurs either by unidirectional serial flow through lamellae and pores or by being funneled through the regions of the lamellae above and below the bridges. The validity of this model is demonstrated by a comparison of the predictions obtained from it and those obtained from the numerical model. The effects of pore geometry on conductive and radiative heat transfer within the coating have been investigated over a range of temperatures and gas pressures. It is shown that the main factor controlling the conductivity is the intersplat bridge area. Comparisons are also presented with experimental conductivity data, for cases in which some attempt has been made to characterize the key microstructural features. The study is oriented toward thermal barrier coatings, based on zirconiayttria top coats. It is noted that the effect of microstructural sintering, which tends to occur in these coatings under service conditions, can be predicted using this model.  相似文献   

10.
通过大气等离子喷涂在HA188合金基材上制备NiCoCrAlY+YSZ热障涂层,然后分别对试样在高真空和低真空中进行1080 ℃的热处理。通过在1100 ℃对热处理前后的热障涂层进行热循环考核,并在具备EDS的扫描电镜下分析了热循环前后的显微组织和成分。结果表明,真空热处理显著提高了APS-NiCoCrAlY+APS-YSZ热障涂层的热循环寿命,一方面是由于真空热处理后在APS-NiCoCrAlY/APS-YSZ界面上形成连续的TGO层受到了抑制,降低了由TGO产生的应力开裂,另一方面真空热处理后的涂层热循环时在APS-NiCoCrAlY的内部产生了更多的氧化物,在一定程度上降低了APS-NiCoCrAlY的热膨胀系数,减少了由APS-NiCoCrAlY/APS-YSZ热膨胀系数不匹配造成的应力开裂。并且低真空热处理的涂层内部失效裂纹没有像高真空热处理的涂层那样均匀连续扩展。  相似文献   

11.
采用多种方法制备不同类型的Al2O3-13%TiO2热障涂层,即等离子喷涂常规涂层、纳米结构涂层及激光熔覆纳米结构涂层.在分析三类涂层微观组织的基础上,对其隔热性能进行了比较.结果表明,即等离子喷涂常规陶瓷涂层呈典型的层状堆积特征,纳米结构涂层都为特殊的两相结构,其中部分熔化区由类似的残留纳米粒子组成,等离子喷涂纳米结构涂层的完全熔化区为片层状结构,而相应的激光熔覆涂层的完全熔化区则为细小等轴晶.在相同条件下,等离子喷涂纳米结构热障涂层具有最好的隔热性能,而激光熔覆纳米结构涂层的隔热性能要好于等离子喷涂常规涂层.  相似文献   

12.
Plasma- sprayed coatings produced with two zirconia powders (− 90 + 10 μm, spray dried and partially sintered) that were stabilized (9 wt %) with dysprosia (DSZ) and ytterbia (YbSZ) were compared to coat-ings sprayed with a yttria (7 wt %) stabilized zirconia (YSZ) powder (45 + 22 μm, fused and crushed). The YSZ particles in the coating were almost fully molten (less than 0.2 % monoclinic m- phase), with excellent contact between the layered splats (adhesion of 54 MPa). The DSZ particles were only partially melted (3.1 % m- phase), with coating adhesion greater than 34 MPa; the YbSZ particles were less melted (6.1 % m- phase), with coating adhesion of 27 MPa. The thermal properties (diffusivity, a; specific heat, cp; and thermal conductivity, κ) of the coatings were about the same. Under thermal cycling (1 h heating at 1100 °C in a furnace followed by fast cooling for approximately 3 min by air jets) of the coatings sprayed on FeCrAl alloy manufactured by powder metallurgy, the behavior of the DSZ coating was simi-lar to that of the YSZ, whereas the YbSZ coating was partially detached. However, in all cases the percent-age of the monoclinic phase decreased and the ratio of the hexagonal structure increased to 1.013 of the nontransformable tetragonal phase t′.  相似文献   

13.
An original process of superficial thermal treatment is described. This process has been successfully applied to partially stabilized yttria-zirconia coatings (ZrO2-Y2O3) to increase the lifetime of the thermal barriers. A thin superficial layer was melted, and morphological transformations were observed. A microstructural comparison between as-sprayed layers and thermally treated layers is presented.  相似文献   

14.
Anisotropic thermal conductivities of the plasma-sprayed ceramic coating are explicitly expressed in terms of the microstructural parameters. The dominant features of the porous space are identified as strongly oblate (cracklike) pores that tend to be either parallel or normal to the substrate. The scatter in pore orientations is shown to have a pronounced effect on the effective conductivities. The established quantitative microstructure-property relations, if combined with the knowledge of the processing parameters-resulting microstructure connections, can be utilized for controlling the conductivities in the desired way.  相似文献   

15.
This article addresses the problem of gas permeability of thermal sprayed yttria-stabilized zirconia thermal barrier coatings (TBC)s. The objective of this study was to decrease the open porosity of TBCs through deposition of dense alumina ceramic on the surface of the pores. A simple infiltration technique was used, beginning with aluminum isopropoxide as sol precursor, subsequently hydrated to aluminum hydroxide sol, which decomposed at relatively low temperatures to extra-fine, readily sinterable aluminum oxide. In some experiments, the sol-gel (SG) precursor was combined with fine grains of calcined alumina, constituting high solid-yield composite sol-gel (CSG) deposits within the pores of TBCs. Sinterability in the model systems, including aluminum hydroxide sol-calcined alumina and aluminum hydroxide sol-calcined alumina-zirconia, has been studied. A number of TBC specimens were impregnated with suspensions of alumina sols and CSG. It is shown that these ceramics effectively penetrated into the pores and cracks of TBCs and reduced the coating permeability to gases. The overall reduction of porosity was however small (from ∼12 to ∼11%), preserving the strain and thermal shock tolerance of the coatings. Burner rig tests showed an increase in sealed coating lifetime under thermomechanical fatigue conditions.  相似文献   

16.
纳米氧化锆热障涂层组织结构和高温稳定性能分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用大气等离子喷涂技术制备了纳米氧化锆热障涂层.利用FESEM和XRD对纳米氧化锆热障涂层的微观组织和物相组成进行研究.微观组织分析结果表明,纳米氧化锆热障涂层展现出独特的微观复合结构,包括未熔纳米颗粒和柱状晶组织.物相分析结果表明,纳米氧化锆热障涂层主要由非平衡四方相组成.纳米氧化锆热障涂层高温稳定性能试验结果表明,涂层晶粒度随着服役温度和服役时间的增加而增加,但仍保持纳米结构;涂层物相组成不随服役环境的变化而变化.  相似文献   

17.
等离子喷涂热障涂层的隔热性分析   总被引:4,自引:0,他引:4  
采用大气等离子喷涂方法制备不同类型的氧化钇部分稳定氧化锆热障涂层:传统涂层、纳米团聚粉末制备的纳米涂层和空心球粉末制备的空心球涂层。通过扫描电镜、透射电镜、压汞仪和激光脉冲法观察和测试各种涂层的组织形貌、空隙分布和导热系数,并在相同条件下测试各种涂层的隔热性能。结果表明:纳米涂层空隙率最低,内部孔洞细小。空心球涂层组织相对疏松,内部层片更薄,有最高的空隙率和最大的平均空隙大小。传统涂层介于二者之间。纳米涂层和传统涂层均表现出双态空隙大小分布。涂层的导热系数均随着温度的上升而升高。传统涂层的热导率最高,纳米涂层与空心球涂层的热导率相接近。纳米涂层具有最好的隔热性能,空心球涂层接近纳米涂层的隔热效果。隔热效果与涂层厚度呈线性关系。随着厚度增加,导热系数低的纳米涂层和空心球涂层的隔热效果增长幅度高于传统涂层。  相似文献   

18.
Several studies have been undertaken recently to adapt yttria partially stabilized zirconia (YPSZ) thermal barrier coating (TBC) characteristics during their manufacturing process. Thermal spraying implementing laser irradiation appears to be a possibility for modifying the coating morphology. This study aims to present the results of in situ (i.e., simultaneous treatment) and a posteriori (i.e., post-treatment) laser treatments implementing a high-power laser diode. In both cases, the coatings underwent atmospheric plasma spraying (APS). Laser irradiation was achieved using a 3 kW, average-power laser diode exhibiting an 848 nm wavelength. Experiments were performed to reach two goals. First, laser post-treatments aimed at building a map of the laser-processing parameter effects on the coating microstructure to estimate the laser-processing parameters, which seem to be suited to the change into in situ coating remelting. Second, in situ coating remelting aimed at quantifying the involved phenomena. In that case, the coating was treated layer by layer as it was manufactured. The input energy effect was studied by varying the scanning velocity (i.e., between 35 and 60 m/min), and consequently the irradiation time (i.e., between 1.8 and 3.1 ms, respectively). Experiments showed that coating thermal conductivity was lowered by more than 20% and that coating resistance to isothermal shocks was increased very significantly.  相似文献   

19.
以纳米结构Y2O3稳定的ZrO2热喷涂粉末为原料,采用等离子喷涂法在Ti-6Al-4V合金上制备了纳米结构的热障涂层。利用扫描电镜(SEM)及扫描热显微镜(SThM)对涂层的微观组织及热性能进行了分析。在实验基础上建立了理论模型,并对涂层及基体的热导率进行了估算。结果表明:采用SThM分析方法估算的涂层厚度及涂层上的缺陷尺寸与采用其它分析方法测得的结果一致;虽然热导率的估算结果与采用其它方法得出的结果差异较大,但显示出扫描热显微镜分析是估算材料热导率潜在的方法。  相似文献   

20.
激光重熔纳米氧化锆热障涂层的抗热冲击性能   总被引:2,自引:1,他引:1       下载免费PDF全文
采用纳米氧化锆团聚粉末和等离子喷涂技术制备了纳米氧化锆涂层,试验研究了激光重熔工艺参数(激光比能量)对纳米氧化锆涂层抗热冲击性能的影响.试验结果表明,激光重熔工艺参数对重熔涂层的抗热冲击性能影响显著,采用合适的工艺参数(激光比能量),可以使重熔涂层获得最佳的抗热冲击性能.不同激光重熔工艺参数处理的涂层形成的组织结构不同,使得涂层的抗热冲击性能不同.合适的激光重熔工艺参数下涂层表现出高的抗热冲击性能,主要是因为重熔后的涂层组织结构有利于热应力的释放以及其相结构在高温冲击下具有良好的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号