首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fractionation of soil P into various organic and inorganic pools with differing levels of bioavailability, coupled with knowledge of the P adsorption and desorption characteristics of the soils, provides insights into management strategies that enhance P availability to crops. Sequential soil P fractionation was conducted on samples from 11 soil profiles and different experimental fields selected from the derived savanna (DS) and northern Guinea savanna (NGS) zones of the West African moist savanna to assess the influence of soil characteristics and management on soil P pools. Phosphorus adsorption and desorption studies were conducted on samples from the surface horizon of the soil profiles. The total P content varied within and among the soil profiles and tended generally to decrease as depth increased. The total P content in topsoil varied from 90 to 198 mg kg–1 of which about 30% was organically bound P. The resin P fraction was generally low (mean = 5 mg kg–1, topsoil) and decreased with depth. These low resin P levels indicate low P availability. Within the DS, where the organic resource (OM) was Senna siamea residues, the effects on soil P fractions of OM and soluble P fertilizer (PF), whether sole or in combination, were site-specific. While resin P was significantly increased by OM in some sites, no significant differences were observed in others. In the NGS fields, farmyard manure (organic resource, OM) combined with PF and PF applied alone increased the inorganic P (Pi) fractions extractable with resin, bicarbonate, and NaOH by about 400% but had no significant effect on the organic P (Po) pools and the more stable Pi forms. The P sorption capacities were low, with the adsorption maximum deduced from the Langmuir equation ranging from 36 to 230 mg kg–1. The amount of P sorbed to maintain 0.2 mg l–1 in solution ranged between 0.6 and 16 mg kg–1. Phosphorus desorption with anion exchange resin differed among the soils, with the recovery of added P ranging from 17 to 66% after 96 h. On average, more of the applied P was recovered in the DS soils than in the NGS soils. Because of the relatively low sorption capacity and the relatively high percentage recovery, small additions of P to most of the soils studied might be adequate for crop growth. In essence, quantities of P fertilizer needed in these soils might be estimated based on considerations of P uptake by crops rather than on sorption characteristics.  相似文献   

2.
A field trial was conducted on two P sorptive, basaltic soils commonly used for maize production in Northwestern Cameroon. The objective was to determine the maintenance P rates required for adequate P supply in the soils for maize after initial capital dressing applications of P (0, 22, 44, 88 and 132 kg ha-1) in 1991. These were followed by three supplementary P rates – 0, 44 and 88 kg ha-1 in 1992. Three crops of maize (cv COCA) were grown to monitor the availability of the residual P. Experimental design was randomized complete block with four replications in 1991 and a split-plot in 1992 and 1993. The soils at the experimental sites were rich in organic P which formed 67% and 57% of total P at Mfonta and Babungo respectively. Laboratory P sorption studies indicated high P requirements by the basaltic soils used in the study. The amounts of P sorbed to attain 0.2 ug g-1 in soil solution were 1200 ug g-1 at Mfonta and 600 ug g-1 at Babungo. In spite of these high P sorption capacities, significant responses to small rates of P application were observed. It was concluded that a sizable proportion of P released from organic P mineralization was used to satisfy P sorption capacity of the soils, resulting in maize response to small rates of fertilizer P application. Residual P effects on maize yield were related to applied P. Bray 1 extractable soil P was weakly related to grain yields (r = 0.136 at Mfonta and r = 0.186 at Babungo). A critical value of 5.5 mg kg-1 Bray 2 extractable P in the soil was established for maize at Mfonta site. About 44 kg P ha-1 was recommended for maize at this site when Bray 2 soil P test was below this critical value.  相似文献   

3.
A comprehensive scientific assessment of CH4 budget estimation for Indian rice paddies, based on a decade of measurements in India, is presented. Indian paddy cultivation areas contain soils that have low to medium levels of soil organic carbon. The average seasonally integrated CH4 flux (E sif) values calculated from these measurements were 15.3 ± 2.6 g m–2 for continuously flooded (CF), 6.9 ± 4.3 g m–2 for intermittently flooded (IF) single aeration (SA) and 2.2 ± 1.5 g m–2 for IF multiple aeration (MA) rice ecosystems. For CF and IF (MA) rice ecosystems having high soil organic carbon, without organic amendments, the CH4 flux (E sif) may be increased by 1.7 times relative to low soil organic carbon, whereas it may enhance by 5.3 for CF if amended organically. Organic amendment and high soil organic carbon paddy areas do not alter the methane budget estimates for India (3.6±1.4 TgY–1) much, due to their small paddy harvested area. Methane estimated using average emission factors (E sif) for all paddy water regimes, which include harvested areas having soils with high organic carbon and organic amendments, may give a budget of 5 TgY–1 for India.  相似文献   

4.
Organic carbon is known to alter crop response to applied phosphorus (P) but that fact has not been incorporated in soil test interpretations. To achieve this objective, field experiments with wheat were conducted for four years on alkaline soils of Punjab, India. The experimental soils ranged from loamy sand to loam in texture, 7.4 to 9.6 in pH, 0.16 to 0.75% in organic carbon (OC) and 2 to 40 mg Olsen extractable P kg–1 soil. Response of wheat to fertilizer phosphorus application was related to the combined effect of Olsen P and soil OC content. At a given Olsen P level, wheat yield was a function of soil OC content. Multiple regression analysis of the data showed that OC content <0.2% did not affect yield significantly. At values >0.6%, OC along with Olsen P accounted for 97% of the variation in yield and there was no response to applied fertilizer P. Yield isoquants for 4 and 5 tons grains ha–1 showed that for a given Olsen P level, as OC content increased the amount of fertilizer P required to achieve a yield target decreased. It was shown that OC may be used to approximate the contribution of organic P mineralization to plant available soil P during a growing season. The reliability of fertilizer recommendations based on Olsen P may be improved on some alkaline soils by consideration of soil OC content.  相似文献   

5.
Exchangeable and non-exchangeable phosphate sorption in Portuguese soils   总被引:2,自引:0,他引:2  
Total amounts of phosphate (P) sorbed were measured for 6 Portuguese soils of widely varying properties.32P was used to assess the isotopically exchangeable and non-exchangeable sorbed P. Total sorbed and exchangeable P were described by modified Freundlich equations and non-exchangeable P by a Temkin equation. The Langmuir equation also proved to fit the data for non-exchangeable P well. The amount of total sorbed P required to attain 0.2 mg P 1–1 in solution ranged from 5.3 to 819 mg P kg–1. At this concentration exchangeable and non-exchangeable P values varied from 62.4 to 536.6 and from 0.4 to 322.1 mg P kg–1 respectively.There were highly significant (p < 0.01) correlations between soil organic matter and all forms of sorbed P (total sorbed, exchangeable and non-exchangeable). The P sorption parameters with correlation coefficients greater than 0.967 were parametersa andb of the modified Freundlich equation bn of Temkin and parametersa of the Langmuir equation. Aluminium extracted by acid oxalate (Alox) and dithionite (Aldi) showed highly significant correlation coefficients (r = 0.972) with the same sorption parameters. But P sorption was not closely related to the clay content Feox and Fedi. It was concluded that extractable aluminium (Alox and Aldi) had the most important effects on P sorption in these soils.  相似文献   

6.
Decline in carbon content in agricultural soils contributes both to climate change and to soil fertility problems. The CENTURY element dynamics simulation model was tested and adapted for Northern European agricultural conditions using long-term datasets from Askov experimental farm in southern Denmark. The part of the model dealing with decomposition was tested in isolation using a bare fallow experiment and it could predict soil organic matter levels with high accuracy. In the cropping experiments predictions were less accurate. The crop production was not accurately predicted. Predictions were more accurate on loamy than on sandy soils. The model was used to predict the effect of conversion to organic agriculture on carbon sequestration as soil organic matter. It predicted an increase in soil organic matter during the first 50 years of about 10–40 g C m–2 y–1, and a stable level after about 100 years. The use of grass-clovers in the rotation and as cover crops was particularly important for the increase in organic matter.  相似文献   

7.
Long-term transformations of residual phosphorus (P) governs the availability of phosphorus to crops. Very limited information is available on the transformations of residual fertilizer P in semi-arid tropical soils under long-term crop rotations. Therefore, using sequential phosphorus fractionation procedure, we studied changes in labile and stable forms of inorganic and organic P in a semi-arid alluvial soil (Typic Ustisamments) after eight years of annual fertilizer P application either to one crop (alternate) or to both crops (cumulative) in a peanut (Arachis hypogaea) — wheat (Triticum aestivum) rotation.Total residual fertilizer P in soil (P recovered from P-fertilized minus control plots) ranged from 62 to 176 mg P kg–1. In the alternate P treatments (P applied to peanut or wheat only), on an average of 3 rates of applied P (13, 26 and 39 kg P ha–1), in surface (0–15 cm) and subsurface (15 to 30 cm) soil, respectively, residual fertilizer P consisted of 14.8 and 2.2% resin-P, 8.6 and 2.8% NaHCO3-P, 6.3 and 0% microbial-P, 31.4 and 4.2% NaOH-P, 7.8 and 3.0% aggregate protected-P, 12.5 and 3.0% HCl-P, 3.4 and 0% H2SO4-P. The corresponding values for surface and subsurface soils of cumulative P treatments (P applied to both peanut and wheat) were: 12.8 and 1.6% resin-P, 6.9 and 2.3% NaHCO3-P, 4.7 and 0% microbial-P, 32.5 and 4.2% NaOH-P, 5.6 and 2.0% aggregate protected-P, 14.8 and 3.8% HCl-P, 6.7 and 2.1% H2SO4-P. Considerable lower values for the 15–30 cm depth indicate only a very small movement of residual P to the subsoil.Significantly lower amount of fertilizer P (28% and 44%) found in labile (resin, NaHCO3 and microbial P) and semi-labile (NaOH and sonicated NaOH P) fractions for the cumulative P treatment than alternate P treatment (35 and 46%, respectively) suggests that increased rates and frequency of applied P tend to enhance the conversion of residual P to stable forms which are less available to plants. About 12 to 19% of residual fertilizer P found as organic P in labile and semi-labile forms confirmed that organic P increased with long-term fertilizer management. In conclusion, the results of our study suggest that the alternate application of fertilizer P to a crop, as is shown for wheat, helps reduce the transformations of residual P to stable P forms.  相似文献   

8.
In a greenhouse experiment the response of chickpea (Cicer arietinum) to zinc fertilization was examined using 27 soils from the semi-arid tropics. The critical level of DTPA extractable soil Zn was evaluated. Zinc additions to the soil increased the dry matter yield of six weeks old plant shoot, grain and straw significantly at the 5 mg kg–1 level, but tended to decrease it at the 10 mg kg–1 level.The DTPA extractable Zn of the soils ranged from 0.28 to 1.75 ppm and was negatively correlated at 1 per cent level with pH (r = – 0.81) and positively with organic carbon (r = 0.79) and Olsen's P (r = 0.63). The per cent yield increase or decrease over zero zinc ranged from 67 to – 16 in respect of grain yield and was positively correlated with available Zn (r = 0.86**). Zinc concentration in plants was greatly increased with the application of Zn and accumulation of Zn was higher in grain than straw. The critical level of available zinc in soil below which plant response to Zn fertilization may be expected was 0.48 mg Zn kg–1 soil. Soils between 0.48 to 0.70 mg kg–1 of DTPA extractable Zn appear boarderline and a negative response to applied Zn was observed in soils of high Zn category. The results show the suitability of DTPA soil test for demarcating soils on the basis of plant response to zinc fertilization.  相似文献   

9.
Nine heavily fertilized soils were collected from southern and central Norway. A greenhouse experiment in the phytotron was conducted to evaluate the P supplying capacities of these soils at different temperatures (9, 12 and 18 °C). The crops were grown in succession and the sequence was oat, rye grass (cut twice), oat, rape and oat. Effect of temperature on dry matter (DM) yield and P uptake was more marked up to the fourth crop but the effect varied among crops. The DM yields of oat and rape increased with increasing temperature but the opposite was the case with rye grass. The yield differences among soils at 12 °C were highly significant (p < 0.01) in contrast to 9 and 18 °C. The amount of P taken up by plants in these soils was highest at 18. °C. The P supplying capacity was highest in the soils with higher content of organic P. Generally, the soils of very fine and coarse texture classes failed to supply enough P to crops to avoid P deficiency in the successive crops. Soil P test (P-NH4-lactate) values in most of the soils increased with increasing temperatures. The highest temperature effect was seen in the Særheim sand soil. Soil P test extractants P-AL, Bray-1 and Colwell-P were used to determine P in the soil after each harvest and the soil P test values were compared with P uptake by crops. Only the P-AL extractant was significantly correlated to cumulative P removal (CPR) by plants in most of the soils. Regression equation was calculated for each soil. The value of removed P per harvest (RPH) varied from 10.33 to 20.87 mg P kg–1 soil. Phosphorus drawdown slope was determined for each soil and the number of consecutive harvests necessary to reduce the P-AL value to a normal level (110 mg P kg–1 soil) was calculated. The drawdown slope varied widely (1.257–2.801) and this reflected the P buffer capacity and the number of crops required to lower the soil test P value to a normal level. The highest drawdown slope was found in the soils with higher P supplying capacities. The Bray-1 extractant was significantly correlated in the soils with higher buffer capacity but the Colwell-P method did not show significant correlation in any of the soils.  相似文献   

10.
Comparison of resin beads and resin membranes for extracting soil phosphate   总被引:1,自引:0,他引:1  
Six Portuguese soils of varying P sorption capacity were incubated aerobically at 30° C without and with added P in order to give 0.1.mg P L–1 in the soil solution. Two methods of measuring extractable P were compared: (i) mixed-bed cation-anion-resin beads in bags and (ii) a simpler method with anion-resin membrane only. The bag method extracted about twice and 1.5 times as much as the strip method, respectively, without and with added P. The relationships were much closer after one extraction for 2 hours (r = 0.982, p < 0.01) instead of the cumulative extraction of 24 hours (r = 0.635,p > 0.05.). P recovery after incubation was inversely related to some soil properties as organic matter, buffer capacity, selective dissolution Al forms (Alox and Ald) and P sorption. It is suggested that the simpler resin membrane method is more adequate to assess P for many studies of P reaction with soil. A simpler incubation method was tried, consisting of incubation as a soil suspension in water at a high temperature (50° C). The results suggested that this method gave similar results to aerobic incubation, with the advantage that there was no need to measure the required and final water contents of incubated soil.  相似文献   

11.
To reduce the involved uncertainties in the methane budget estimation from rice paddy fields, the methodologies of methane budget estimation have been revised mainly on the basis of measurements undertaken in the Methane Asia Campaign (MAC-98). Studies from other continuous measurements of methane emission from rice paddy fields over last few years in other Asian countries were also used. The Asian Development Bank (ADB) sponsored Methane Asia Campaign (MAC-98) in which India, China, Indonesia, Philippines, Vietnam and Thailand participated during 1998–99.The resulting CH4 measurements have shown that apart from water management, soil organic carbon also plays a significant role in determination of methane emission factors from rice paddy fields. The available data from participating countries reveal that paddy soils can be broadly classified into low soil organic carbon (<0.7%C) and high soil organic carbon (>0.7% C) classes which show average methane emission factors of 12 (5–29) and 36 (22–57) g m–2 respectively for continuously flooded (CF) fields without organic amendments compared to the IPCC–96 emission factor of 20 g m–2. Similarly for irrigated paddy fields with intermittently flooded multiple aeration (IF-MA) without organic amendments, the MAC-98 gives average emission factors of 2 (0.06–3) and 6 (0.6–24) g m–2, respectively, for low and high organic carbon soils compared to IPCC–96 emission factor of 4 (0–10) g m–2. Incorporation of soil organic carbon along with classification based on water management and organic amendments in the estimation of CH4 emissions from rice paddy fields yields more characteristic emission factors for low and high organic carbon soils and is, therefore, capable of reducing uncertainties.  相似文献   

12.
The phosphate sorption isotherms are needed to explain differential plant responses to P fertilization in soils. Laboratory and greenhouse experiments investigated the use of phosphorus sorption isotherms in relation to P fertilizer requirement of wheat in ten benchmark soils of Punjab, India. The modified Mitscherlich Equation (3) was used to describe plant response observed in different soils. Maximum obtainable yield (MOY) ranged from 11.6 g pot–1 in Gurdaspur (I) sandy clay loam to 7.0 g pot–1 in Nabha sandy clay loam. Response to P applied @ 25 mg P kg–1 soil was maximum (77%) in Bathinda sand and minimum in Chuharpur clay loam (33%). The response curvature varied from 3.74 × 10–2 in Nabha sandy clay loam to 4.43 × 10–2 in Kanjli sandy loam. The soil solution P required to produce optimum yield (90% MOY) varied from 1.61 µg ml–1 in Bathinda sand to 0.10 µg ml–1 in Sadhugarh clay. Dry matter yield obtained at 0.2 µg ml–1 solution P concentration ranged from 55% in Bathinda sand to 85% of MOY in Gurdaspur (II) clay loam. At the same solution P concentration (0.1 µg P ml–1), dry matter yield was 91% in Sadhugarh clay, 80% in Gurdaspur (II) clay loam and, 43% of MOY in Bathinda sand and eventually coincided with the decreasing maximum buffer capacity (MBC) in these soils. At the same level of sorbed P (100 mg P kg–1 soil) the yield was observed to be inversely proportional to MBC. The study, therefore, concludes that, soils should be grouped according to their P sorption characteristics and MBC before using critical soil solution P as a criterion for obtaining optimum yields.  相似文献   

13.
The objective of this work was to develop and evaluate a soil test suitable for estimating the phosphorus status of soils whether they were fertilized with soluble or sparingly soluble P fertilizers or both. Four New Zealand soils of contrasting P sorption capacity and exchangeable Ca content were incubated alone or with monocalcium phosphate (MCP), reactive North Carolina (NC) phosphate rock or unreactive Florida (FRD) rock, at 240 mg P kg–1 soil, to allow the P sources of different solubilities to react with each soil and provide soil samples containing different amounts of extractable P, Ca and residual phosphate rock. The phosphorus in the incubated soils was fractionated into alkali soluble and acid soluble P fractions using a sequential extraction procedure to assess the extent of phosphate rock dissolution. Eight soil P tests [three moderately alkaline — Olsen (0.5M NaHCO3) modified Olsen (pretreatment with 1M NaCl) and Colwell; three acid tests — Bray 1, modified Bray 1 and Truog; and two resin tests — bicarbonate anion exchange resin (AER) and combined AER plus sodium cation exchange resin (CER)] were assessed in their ability to extract P from the incubated soils.The 0.5M NaHCO3 based alkaline tests could not differentiate between the Control and FRD treatments in any soil nor between the Control, NC and FRD treatments in the high P sorption soils. The acid extractants appeared to be affected by the P sorption capacity of the soil probably because of reabsorption of dissolved P in the acid medium. The AER test gave results similar to Olsen. Only the combined AER + CER test extracted P in amounts related to the solubility of the P sources incubated with each soil. Furthermore, when soil samples were spiked with FRD and NC and extracted immediately, the P extracted by the AER + CER test, over and above the control soils, increased with the amount and chemical reactivity of the rocks. There was no extraction of rock P by any of the alkaline extractions.Increases in the amounts of P extracted (P) by each soil test from the fertilized soils, over and above the control soils were compared with the amounts ofP dissolved from the fertilizers during incubation (measured by P fractionation). Soil P sorption capacity had least influence on the amounts of P extracted by the AER + CER and Colwell tests. However, the Colwell test was unable to differentiate between all P sources in all four soils and suffered from the disadvantage of producing coloured extracts. The AER + CER test appeared to have the potential to assess the available P status of soils better than the other tests used because of its ability to extract a representative portion of residual PR (in accordance with the amount and reactivity) and dissolved P, and thus to differentiate between fertilizer treatments in all four soils.  相似文献   

14.
Five field experiments involving P application rates from 0 to 66 kg P ha–1 were conducted on irrigated wheat at Tandojam, Pakistan. The soils belonged to two great soil groups, Torrifluvent and Camborthid. All soils were calcareous. Olsen-P contents ranged from 3.5 to 6.3 mg P kg–1. Phosphate sorption curves were developed for soils from control (no P) plots at each site. Concentrations of P in solution established by fertilization in the field as estimated from the sorption curves ranged from 0.008 to 0.16mg P L–1. Actual grain yields were converted to relative grain yields and plotted against corresponding concentrations of P in solution. Yield response to P application was obtained in each experiment. Control plot yields ranged from 57 to 89% of maximum yield of respective experiments. Phosphorus requirements of wheat were 0.032 mg L–1 for 95% yield as determined from a composite yield response curve. Predicted quantities of P required to attain 0.032 mg P L–1 ranged from 18 to 29 kg P ha–1. The results of the study suggest that the P sorption approach can be used as a rational basis for making P fertilizer recommendations for various soil-crop combinations.  相似文献   

15.
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS.  相似文献   

16.
Studies were conducted to investigate the P sorption characteristics and P fractions in eight intensively fertilized soils collected from southern and central Norway. Adsorption of P at the initial P concentrations in the soil solution was very high in the Særheim clay loam soil which contained high amounts of organic C and clay. Adsorption data were fitted well to the classical Langmuir equation. The P affinity constant (k), adsorption maximum (b) and maximum buffer capacity (mbc) calculated from this equation differed considerably among soils. The P affinity constant (r=0.96,p=0.01) and maximum buffer capacity (r=0.97,p=0.01) were highly and positively correlated to organic C. None of the soil parameters were related to adsorption maximum. Phosphorus desorption from the heavily fertilized soils varied widely and depended on the initial P status of the soil and soil texture. The ratio between desorbed P and total P was significantly correlated to sorption parameters. Multiple regression analysis showed that total P positively and organic C negatively affected P desorption in the soils. Iron-P was a major P sink in these soils and it was related to clay content (r=0.69,p=0.1) and organic P (r=0.76,p=0.0.5), but it did not relate to average P removed per harvest (RPH). Calcium-P and Al-P were not related to any of the soil parameters but these fractions were the major contributors to RPH as expressed by a multiple regression equation: RPH=0.397+0.0016 × Ca-P + 0.0012 × Al-P (r=0.84,p=0.05). High content of inorganic fractions shows that most of the residual P may be plant available, albeit at reduced rate with time, in these soils but the availability will depend on soil types.  相似文献   

17.
This paper describes results from a study of the effects of various applications of phosphorus (P) on the amounts, forms and potential mobility of P in grassland soils (0-7.5 cm) collected from four locations in the United Kingdom (Hertfordshire, Devon) and New Zealand (Taranaki, Canterbury). A sequential extraction scheme (NH4Cl, NH4F, NaOH I, H2SO4, NaOH II, residual P) designed to isolate P associated with aluminium (Al), iron (Fe) and calcium (Ca) was used to characterise P in the grassland soils from each location which had received various quantities of mineral fertilizer, organic manure and lime. Concentrations of total P in the soils ranged from 540 to 3,994 mg P kg-1, and sequential extraction recovered 80–94% of total soil P. Extractable forms of inorganic P and organic P accounted for 40–52% and 31–50% of total soil P respectively. Inorganic and organic P present in the NaOH I fraction (P associated with Fe, Al and organic matter) accounted for most of the P which accumulated in soil from P inputs. Distribution of accumulated soil P between the various inorganic and organic P fractions appeared to be mainly controlled by the nature and availability of sorption surfaces which act as sinks for inorganic P. Phosphate sorption index data for the various soil sets indicated that the mean value of bicarbonate extractable inorganic P (Olsen P) which represented effective P saturation ranged from 61 to 217 mg P kg-1. Potentially mobile soil P as determined by extraction with 0.01M calcium chloride (CaCl2) was found to be most strongly correlated to the NH4F, NaOH I and H2SO4 inorganic P fractions using a Freundlich isotherm.  相似文献   

18.
An important criterium in selecting species for alley cropping is themineralization pattern of their prunings. This study determined effects of 5years of hedgerow pruning applications on soil organic C and total N at threelocations in Haiti and mineralization patterns from soil amended with theprunings during an incubation using micro-lysimeters. Soils (0–5cm) under 5 hedgerows were collected at each site and analyzed fororganic C and total N. In the laboratory, ground leaves and stems (<1cm diameter) of the hedgerow species were mixed with soil at ratesof 3 and 1.5 Mg ha–1, respectively, andaerobically incubated in the dark at 25 °C. A non-amended soilwas used as control. Soils were leached to determine mineral N at 1, 3, 7, 14,28, 42, 84 and 120 days of incubation. Evolved CO2 was measuredfollowing each leaching procedure. At the calcareous site, application ofprunings from Leucaena leucocephala (Lam.) De Wit andDelonix regia (Boj. ex Hook. Raf.) resulted in 23 and 13%higher soil N than the control, respectively, after 5 years. There were nodifferences in total N at the other sites but soil N was highest underLeucaena hybrid and Acaciaangustissima (Mill.) Kuntze, respectively at the basaltic and highelevation sites. Soils under D. regia (calcareous) andA. angustissima and Leucaena hybrid(high elevation) had higher organic C than the respective controls. Carbon andNmineralization and C turnover were highest when soils were amended with leavesof Leucaena diversifolia (Schlecht.) Benth (calcareous andbasaltic soils) and A. angustissima (high elevation) andlowest in non-amended control soils. Stem-amended soils showed differences in Cmineralization for calcareous and high elevation soils whereas N mineralizationwas similar among treatments within sites. Carbon and N mineralization (highelevation soil) correlated positively with N concentrations of leaf prunings.Amendments with leaf prunings increased soil C and N mineralization andturnoverrates, suggesting greater nutrient availability for the crop during a shortperiod than in non-amended control soils.  相似文献   

19.
Phosphorus (P) sorption properties are poorly documented for Swedish soils. In this study, P sorption capacity and its relation to soil properties were determined and evaluated in 10 representative Swedish topsoils depleted in available P. P sorption indices were estimated from sorption isotherms using Langmuir and Freundlich equations (Xm and aF, respectively) and P buffering capacity (PBC). Xm ranged from 6.0 to 12.2 mmol kg–1. All indices obtained from sorption isotherms were significantly correlated with each other (r=0.96*** to r=0.99***). Two single-point sorption indices (PSI1 and PSI2) were also determined, with additions of 19.4 and 50 mmol P kg–1 soil, respectively. Both PSI indices were well correlated with Xm (r0.98***), with PSI1 giving the highest correlation. As isotherms for determining P sorption capacities involve laborious analytical operations, PSI1 would be preferable for routine analyses. Xm was significantly correlated with Fe extracted by sodium pyrophosphate and ammonium oxalate, to Al extracted by ammonium oxalate and dithionite-citrate-bicarbonate and to organic c. Xm was also significantly correlated with the sum of Fe and Al extracted by ammonium oxalate. The best prediction of Xm through multiple regression was obtained when Fe extracted in ammonium oxalate and Al extracted in dithionite-citrate-bicarbonate were used. Based on the results obtained, both PSI1 and oxalate-extractable Fe plus Al can be used for predicting P sorption capacity in Swedish soils.  相似文献   

20.
Phosphate, applied at 5µg P cm–3, decreased selenite sorption by from 30–70% in three soils studied. Both maximum sorption (Xm) and the binding-energy of sorption as indicated by the binding-energy related constant (k) or the molar free energy (G) of the sorption reaction derived from the Langmuir equation were considerably decreased. On the other hand, phosphate sorption was decreased by increasing concentration of selenite from 0.2µg Se cm–3 to 1.0µg Se cm–3 in the initial solution. The competitive sorption of phosphate with selenite was likely the main mechanism involved in the P-Se interactions. The competitively sorbed selenite exhibited much larger desorption in 0.01M CaCl2 solution, more readily extractable to 0.5M NaHCO3 and significantly higher isotopic exchangeability compared to that sorbed without the competing anion. Results from pot trial using ryegrass indicated that phosphate application increased more efficiently the plant-availability of applied fertilizer Se than that of indegeneous Se in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号