共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric load forecasting using an artificial neural network 总被引:4,自引:0,他引:4
Park D.C. El-Sharkawi M.A. Marks R.J. II Atlas L.E. Damborg M.J. 《Power Systems, IEEE Transactions on》1991,6(2):442-449
An artificial neural network (ANN) approach is presented for electric load forecasting. The ANN is used to learn the relationship among past, current and future temperatures and loads. In order to provide the forecasted load, the ANN interpolates among the load and temperature data in a training data set. The average absolute errors of the 1 h and 24 h-ahead forecasts in tests on actual utility data are shown to be 1.40% and 2.06%, respectively. This compares with an average error of 4.22% for 24 h ahead forecasts with a currently used forecasting technique applied to the same data 相似文献
2.
根据负荷的不确定性和非线性的特点,采用了ANN和AFS理论进行STLF,分两个步骤:在ANN中引入了平滑因子和遗忘因子,来加快收敛速度并解决ANN的遗忘问题;在AFS中对基本负荷预测值进行修正,引进不平均的隶属函数来体现负荷变化对温度的敏感性。实践表明该模型具有速度快、预测精度高等优点。 相似文献
3.
根据负荷的不确定性和非线性的特点 ,采用了ANN和AFS理论进行STLF ,分两个步骤 :在ANN中引入了平滑因子和遗忘因子 ,来加快收敛速度并解决ANN的遗忘问题 ;在AFS中对基本负荷预测值进行修正 ,引进不平均的隶属函数来体现负荷变化对温度的敏感性。实践表明该模型具有速度快、预测精度高等优点 相似文献
4.
A multilayered-type neural network is attractive for daily electric load forecasting because the neural network can acquire a nonlinear relationship among the electric load data and their factors (weather, temperature, etc.) automatically. This paper discusses first some essential issues to be considered in neural network applications. One is difficulty of obtaining sufficient effective training data, another is the influence of abnormal learning data, and one more is the inevitable outerpolation. For these issues, the following three methods are developed in order to forecast more accurately: (1) a structure of the neural networks for insufficient training data; (2) detection and diminishing the influence of abnormal data; (3) employment of interpolation network and outerpolation network with additional data for outerpolation. Furthermore, to increase the sensitivity between electric loads and factors, (4) removal of base load is developed. Those methods work effectively to decrease the average absolute errors of peak-load forecasting and 24-hour load forecasting to 1.78 percent and 2.73 percent, respectively. 相似文献
5.
《Electric Power Systems Research》1995,33(1):1-6
An artificial neural network (ANN) model for short-term load forecasting (STLF) is presented. The proposed model is capable of forecasting the next 24-hour load profile at one time, as opposed to the usual ‘next one hour’ ANN models. The inputs to the ANN are load profiles of the two previous days and daily maximum and minimum temperature forecasts. The network is trained to learn the next day's load profile. Testing of the model with one year of data from the Greek interconnected power system resulted in a 2.66% average absolute forecast error. 相似文献
6.
7.
The authors present an artificial neural network (ANN) model for forecasting weather-sensitive loads. The proposed model is capable of forecasting the hourly loads for an entire week. The model is not fully connected; hence, it has a shorter training time than the fully connected ANN. The proposed model can differentiate between the weekday loads and the weekend loads. The results indicate that this model can achieve greater forecasting accuracy than the traditional statistical model. This ANN model has been implemented on real load data. The average percentage peak error for the test cases was 1.12% 相似文献
8.
9.
基于小波网络的短期负荷预测方法 总被引:5,自引:0,他引:5
提出一种基于小波网络的短期负荷预测模型,小波网络结合了小波变换良好的时频局域性质和神经网络的自学习能力,因此具有比神经网络更灵活的函数逼近能力,同时有效地改善了神经网络难于合理确定网络结构、存在局部最优等缺陷,算例表明,这种模型是快速准确的。 相似文献
10.
短期负荷预测的重要性随着电力企业的发展不断提高。传统的负荷预测虽然已经发展相对成熟,但现阶段对负荷预测的准确性要求逐渐提高。为满足发展需要,则要对现有的方法进行改进或建立新的预测方法。通过分析负荷预测数据周期性及周期内的特征,结合递归神经网络在分析时间序列数据的独特优势和受限玻尔兹曼机的强大的无监督学习能力,对结合受限玻尔兹曼机的递归神经网络的工作原理及训练过程进行了阐述。利用该网络进行了电力负荷数据预测实验验证并与其他神经网络进行了比较性实验。结果表明,所提出的神经网络较其他网络在电力短期负荷预测实验中有更高的准确性。 相似文献
11.
One-hour-ahead load forecasting using neural network 总被引:2,自引:0,他引:2
Load forecasting has always been the essential part of an efficient power system planning and operation. Several electric power companies are now forecasting load power based on conventional methods. However, since the relationship between load power and factors influencing load power is nonlinear, it is difficult to identify its nonlinearity by using conventional methods. Most of papers deal with 24-hour-ahead load forecasting or next day peak load forecasting. These methods forecast the demand power by using forecasted temperature as forecast information. But, when the temperature curves changes rapidly on the forecast day, load power changes greatly and forecast error would going to increase. In conventional methods neural networks uses all similar day's data to learn the trend of similarity. However, learning of all similar day's data is very complex, and it does not suit learning of neural network. Therefore, it is necessary to reduce the neural network structure and learning time. To overcome these problems, we propose a one-hour-ahead load forecasting method using the correction of similar day data. In the proposed prediction method, the forecasted load power is obtained by adding a correction to the selected similar day data 相似文献
12.
基于改进型BP神经网络的短期电力负荷预测 总被引:2,自引:1,他引:2
科学、准确的短期电力负荷预测有利于提高电力系统运行的经济性和安全性,向用户提供高质量的电力。提出一种基于改进型BP神经网络的短期负荷预测方法,并充分考虑建模时复杂气候敏感因素的影响,对输入校本的选取、预测模型的建立进行了论述。算例表明所提出方法具有较高的预测精度,负荷预测结果的相对误差小于3.63%。 相似文献
13.
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 相似文献
14.
电力负荷预测对电网的经济运行至关重要,为提高短期负荷预测精度并降低混合神经网络模型的训练时间,提出了一种基于多层感知器(MLP)的基础子网、简单循环单元(SRU)与主成分分析(PCA)的短期电力负荷预测模型。首先,考虑影响电力负荷变化的各种因素,建立负荷预测输入特征集;其次,利用PCA对输入网络的部分特征进行变换并降维;最后,将经过PCA处理后得到的全新数据信息作为模型的输入,并结合Adam梯度下降算法进行训练,输出负荷预测的结果。通过仿真实验结果表明,包含SRU的混合模型在全部测试集样本上的MAPE为2.126%,远低于仅有子网的单一模型与包含DNN的混合模型,而与包含LSTM的混合模型相比,训练时间却降低了22.74%,同时PCA的应用也使得模型的收敛速度加快,极大地减小了训练轮数。 相似文献
15.
《Electric Power Systems Research》2002,63(3):185-196
This paper presents the development and application of advanced neural networks to face successfully the problem of the short-term electric load forecasting. Several approaches including Gaussian encoding backpropagation (BP), window random activation, radial basis function networks, real-time recurrent neural networks and their innovative variations are proposed, compared and discussed in this paper. The performance of each presented structure is evaluated by means of an extensive simulation study, using actual hourly load data from the power system of the island of Crete, in Greece. The forecasting error statistical results, corresponding to the minimum and maximum load time-series, indicate that the load forecasting models proposed here provide significantly more accurate forecasts, compared to conventional autoregressive and BP forecasting models. Finally, a parallel processing approach for 24 h ahead forecasting is proposed and applied. According to this procedure, the requested load for each specific hour is forecasted, not only using the load time-series for this specific hour from the previous days, but also using the forecasted load data of the closer previous time steps for the same day. Thus, acceptable accuracy load predictions are obtained without the need of weather data that increase the system complexity, storage requirement and cost. 相似文献
16.
Kyoko Makino Tsuyoshi Shimada Ryoichi Ichikawa Masaya Ono Tsunekazu Endo 《Electrical Engineering in Japan》1996,116(5):28-42
This paper proposes a forecasting method for shortterm peak electric loads using a 3-layer neural network of locally active units. Each unit in the hidden layer of the neural network is activated only by input vectors in a bounded domain of vector space. This characteristic enables additional learning. Furthermore, it is supposed to provide the network structure with information that helps to improve forecasting accuracy. The neural network is applied to daily peak load forecasting simulations in summer. The results show that the proposed method is superior to a conventional neural network with the backpropagation algorithm. To make the best use of the neural network, an error-oriented method of parameter modification is also examined. 相似文献
17.
为了解决传统BP神经网络对高频分量预测精度不高、泛化能力弱的缺点,提出了一种混合小波变换和纵横交叉算法(CSO)优化神经网络的短期负荷预测新方法。通过小波变换对负荷样本进行序列分解,对单支重构所得的负荷子序列采用纵横交叉算法优化的神经网络进行预测。最后叠加各子序列的预测值,得出实际预测结果。通过实际电网负荷预测表明,新模型能掌握冲击毛刺的变化规律,有效提高含大量冲击负荷地区的负荷预测精度,且预测模型具有较强泛化能力。 相似文献
18.
为了保障电网安全稳定和电力市场高效运行,电网调度人员和电力市场参与者对电力负荷预测准确度提出了更高要求,分布式电源和间歇性负荷是影响负荷精准预测的关键因素。针对传统负荷预测方法无法同时对负荷本身变化规律及其影响因素进行建模的问题,提出基于长短期记忆单元(LSTM)的负荷预测方法。利用具备时序记忆功能的LSTM构建深度循环神经网络(RNN),综合考虑历史负荷和各类负荷影响因素建立负荷预测模型。该方法利用神经网络的特征提取能力和LSTM的时序记忆能力,能在更长的历史时间范围内辨识负荷内在变化规律及各类影响因素对负荷的非线性影响。基于实际负荷数据对不同历史时间窗口、不同网络架构的负荷预测性能进行验证,并与其他负荷预测算法进行比较,结果表明所提方法能有效提升负荷预测准确性。 相似文献
19.
Nima AmjadyFarshid Keynia Hamidreza Zareipour 《Electric Power Systems Research》2011,81(12):2099-2107
Rapid growth of wind power generation in many countries around the world in recent years has highlighted the importance of wind power prediction. However, wind power is a complex signal for modeling and forecasting. Despite the performed research works in the area, more efficient wind power forecast methods are still demanded. In this paper, a new prediction strategy is proposed for this purpose. The forecast engine of the proposed strategy is a ridgelet neural network (RNN) owning ridge functions as the activation functions of its hidden nodes. Moreover, a new differential evolution algorithm with novel crossover operator and selection mechanism is presented to train the RNN. The efficiency of the proposed prediction strategy is shown for forecasting of both wind power output of wind farms and aggregated wind generation of power systems. 相似文献
20.
论述了人工神经网络预测电力系统负荷的方法和步骤,并以BP神经网络在石嘴山地区短期负荷预测中的应用为例,探讨负荷预测的重要性。 相似文献