首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
传统的计算机产生全息图方法由于在标量衍射的光场描述中没有一个统一的数值计算方法,从而计算复杂度高而且重构的3D图像的体积和视场都比较小,离市场化的要求距离远.因此,在目前的计算机硬件条件下,算法和显示系统的研究仍有很大的空间.将分数傅里叶变换引入到全息图的计算中,提出一种分数傅立叶变换产生计算全息图的方法.实验结果表明,分数傅里叶变换相对于传统的傅里叶变换在记录全息数据方面的优越性,并用计算机模拟效果表明了算法的优越性.  相似文献   

2.
为了快速获取更好的全息图显示效果,在研究了分数傅里叶变换与菲涅耳衍射光场的紧密联系的基础上,首先给出了一种分数傅里叶变换的快速数值算法,并将分数傅里叶变换应用到计算全息图中提出了一种用于计算全息图的分数傅里叶变换方法;然后分析了用这种记录全息的方法得到的全息图优越于传统的傅里叶变换获得的全息图,同时给出了计算机的模拟实验结果;最后利用拆卸的投影装置搭建出了以空间光调制器——DMD (数字微镜装置)为核心的全息显示光学系统,并在该系统下获得了用分数傅里叶变换计算得到的全息图的全息显示结果。  相似文献   

3.
DMD全息系统重构灰度级分数傅立叶全息图   总被引:1,自引:0,他引:1  
论文提出一种基于DMD投影系统的全息重构系统,用VC++实现分数傅立叶变换全息图生成平台并生成灰度全息图,由DMD全息系统实现灰度级分数傅立叶变换全息图重构,验证了DMD全息系统的可行性。此系统可为动态全息显示提供硬件基础。  相似文献   

4.
分数傅里叶变换的快速算法及计算全息图的研究   总被引:1,自引:0,他引:1  
通过分析菲涅耳衍射积分的快速算法,依据Lohmann提出的任意阶的分数傅里叶变换的单透镜光学实验装置,详细分析丁光场在此单透镜系统中的传播过程,提出了一种基于傅里叶变换的分数傅里叶变换快速算法,并对基于此快速算法的分数傅里叶变换全息图的计算机生成与数字重现进行了研究。实验结果示出了分数傅里叶变换全息图及其在重构过程中分数阶匹配与否的实验结果,验证了分数傅里叶变换分数阶的重要性质和笔者提出算法的可行性。  相似文献   

5.
通过分析菲涅耳衍射积分的快速算法,依据Lohmann提出的任意阶的分数傅里叶变换的单透镜光学实验装置,详细分析了光场在此单透镜系统中的传播过程,提出了一种基于傅里叶变换的分数傅里叶变换快速算法,并对基于此快速算法的分数傅里叶变换全息图的计算机生成与数字重现进行了研究。实验结果示出了分数傅里叶变换全息图及其在重构过程中分数阶匹配与否的实验结果,验证了分数傅里叶变换分数阶的重要性质和笔者提出算法的可行性。  相似文献   

6.
分数傅里叶全息图的快速算法及数字重现   总被引:2,自引:1,他引:2  
论文通过分析菲涅耳衍射积分的快速算法,提出了一种基于快速傅里叶变换的分数傅里叶变换的数值模拟算法,并研究了基于此快速算法的分数傅里叶变换全息图的计算机生成及数字重现。  相似文献   

7.
基于DMD和分数傅里叶的动态全息体视图显示   总被引:1,自引:0,他引:1  
涂铮铮  汤进  史东 《计算机技术与发展》2009,19(8):247-249,F0003
体视全息术是一种准三维显示技术,较之传统全息图,体视全息图大大降低了记录物体三维信息的数据量,使得计算机生成体视全息图成为可能,而空间光调制器SLM的不断发展也推动了全息显示系统的发展.分析了数字微镜器件DMD对光场的调制特性,将分数傅里叶变换算法用于体视全息图的生成,提出一种基于DMD的全息显示系统,实现了分数傅里叶变换体视全息图的动态显示.实验结果表明该系统能够较好地产生动态3D透视感,为基于DMD的全息显示搭建了系统平台.  相似文献   

8.
基于短时分数阶傅里叶变换的语音增强算法   总被引:1,自引:0,他引:1  
提出了一种基于短时分数阶傅里叶变换(STFRFT)的语音增强新方法.该方法首先将带噪语音信号进行短时分数阶傅里叶变换,然后在分数阶傅里叶域(FRFD)对信号进行滤波,最后对滤波后的信号进行短时分数阶傅里叶逆变换,得到增强后的语音信号.实验表明在选定最佳的分数阶阶数时,可使噪声得到最大限度的滤除,大大提高了语音增强效果.  相似文献   

9.
基于小波与分数傅里叶变换的图像水印算法   总被引:3,自引:0,他引:3       下载免费PDF全文
载体图像的空域隐藏Chirp信号可以通过分数傅里叶变换在变换域中进行盲检测。为了提高该算法的鲁棒性能,该文研究直接离散化方法,合理选取分数傅里叶变换的算子阶数,将Chirp 信号隐藏在图像信号的低频小波域中。仿真实验表明,改进后的水印算法提高了直接在空域进行信息隐藏的鲁棒性。  相似文献   

10.
将含有版权信息的二值图像作为水印,利用混沌密码对其进行加密,对原始图像进行一定阶次的分数傅里叶变换。通过密钥和水印图像之间的对应关系,将水印信息嵌入到原始图像的中频系数中,分数傅里叶逆变换得到嵌入了水印的图像。仿真实验结果表明,实现的水印具有不可见性,而且对于常见的噪声、裁剪、JPEG压缩具有较好的健壮性。  相似文献   

11.
傅里叶描述子是一种经典的形状描述方法。作为傅里叶变换的推广形式,分数阶傅里叶变换在数字信号处理工程领域已有相当广泛的应用,但在形状分析领域还很少有研究工作的报道。首次研究了基于分数阶傅里叶变换的形状描述方法,比较了不同阶数下的分数阶傅里叶描述子在图像检索中的性能。通过在MPEG-7的标准图像测试集的图像检索实验,得出:阶数ρ为0.1时,分数阶傅里叶描述子的检索效果最差,随ρ=0.1的增长,检索性能总体呈上升趋势,当ρ=0.5变化到1.0时,检索性能最高。同时,与Zernike矩进行比较:当阶数为0.1时,分数阶傅里叶描述子的检索性能较差;而阶数为0.5、1.0时分数阶傅里叶描述子的检索性能均较好。  相似文献   

12.
Copyright by Science in China Press 2Linear frequency modulation (LFM or chirp) signals are widely used in information systems such as radar, sonar, and communications. In these systems, to detect and estimate LFM signals is an important problem. For a long time, various methods based on maximum likelihood estimator are the predominant solutions to this task. Most of these methods can be ascribed to a multivariable optimization algorithm and are usually computationally demanding in impleme…  相似文献   

13.
Research progress on discretization of fractional Fourier transform   总被引:5,自引:1,他引:5  
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.  相似文献   

14.
The fractional Fourier transform: theory, implementation and error analysis   总被引:5,自引:0,他引:5  
The fractional Fourier transform is a time–frequency distribution and an extension of the classical Fourier transform. There are several known applications of the fractional Fourier transform in the areas of signal processing, especially in signal restoration and noise removal. This paper provides an introduction to the fractional Fourier transform and its applications. These applications demand the implementation of the discrete fractional Fourier transform on a digital signal processor (DSP). The details of the implementation of the discrete fractional Fourier transform on ADSP-2192 are provided. The effect of finite register length on implementation of discrete fractional Fourier transform matrix is discussed in some detail. This is followed by the details of the implementation and a theoretical model for the fixed-point errors involved in the implementation of this algorithm. It is hoped that this implementation and fixed-point error analysis will lead to a better understanding of the issues involved in finite register length implementation of the discrete fractional Fourier transform and will help the signal processing community make better use of the transform.  相似文献   

15.
The multiple-parameter fractional Fourier transform   总被引:1,自引:0,他引:1  
The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.  相似文献   

16.
In the rapidly time-varying channel environment, the performance of traditional MIMO-OFDM system is deteriorated due to the intercarrier interference. In this paper, a novel MIMO-OFDM system is proposed, in which the modulation and de- modulation of the symbols are implemented by the fractional Fourier transform instead of traditional Fourier transform. Through selecting the optimal order of the fractional Fourier transform, the modulated signals can match the time-varying channel characteristics, which results in a mitigation of the intercarrier interference. Furthermore, an algorithm is presented for selecting the optimal order of fractional Fourier transform, and the impact of system parameters on the optimal order is analyzed. Simulation results show that the proposed system can concentrate the power of desired signal effectively and improve the performance over rapidly time-varying channels with respect to the traditional MIMO-OFDM system.  相似文献   

17.
The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy Δt = T/N = 1/N(1/2) when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号