首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffraction of an arbitrarily polarized electromagnetic plane wave obliquely incident on the edge of a right-angled anisotropic impedance wedge with a perfectly conducting face is analyzed. The impedance tensor on the loaded face has its principal anisotropy axes along directions parallel and perpendicular to the edge, exhibiting arbitrary surface impedance values in these directions. The proposed solution procedure applies both to the exterior and the interior right-angled wedges. The rigorous spectral solution for the field components parallel to the edge is determined through the application of the Sommerfeld-Maliuzhinets technique. A uniform asymptotic solution is provided in the framework of the uniform geometrical theory of diffraction (UTD). The diffracted field is expressed in a simple closed form involving ratios of trigonometric functions and the UTD transition function. Samples of numerical results are presented to demonstrate the effectiveness of the asymptotic expressions proposed and to show that they contain as limit cases all previous three-dimensional (3-D) solutions for the right-angled impedance wedge with a perfectly conducting face  相似文献   

2.
The canonical problem of evaluating the scattered field at a finite distance from the edge of an impedance wedge which is illuminated by a line source is considered. The presentation of the results is divided into two parts. In this first part, reciprocity and superposition of plane wave spectra are applied to the left far-field response of the wedge to a plane wave, to obtain exact expression for the diffracted field and the surface wave contributions. In addition, a high-frequency solution is given for the diffracted field contribution. Its expression, derived via a rigorous asymptotic procedure, has the same structure as that of the uniform geometrical theory of diffraction (UTD) solution for the field diffracted by a perfectly conducting wedge. This solution for the diffracted field explicitly exhibits reciprocity with respect to the direction of incidence and scattering  相似文献   

3.
The canonical problem of plane wave diffraction by a wedge in the context of the spectral domain approach which exploits the relationship between the induced current on a scatterer and its far field is investigated. It is shown how the exact solution to the wedge diffraction problem can be manipulated in a form which enables one to interpret the far scattered field as the Fourier transform of the physical optics (PO) current on the two faces of the wedge augmented by the fringe current near the tip of the wedge. A uniform asymptotic expansion for the total field which slightly modifies the Ansatz in the uniform asymptotic theory of electromagnetic edge diffraction is constructed.  相似文献   

4.
An asymptotic solution of electromagnetic waves scattered by a right-angled dielectric wedge for plane wave incidence is obtained. Scattered far fields are constructed by waves reflected and refracted from dielectric interfaces (geometric-optical fields) and a cylindrical wave diffracted from the edge. The asymptotic edge diffracted field is obtained by adding a correction to the edge diffraction of physical optics approximation, where the correction field in the far-field zone is calculated by solving a dual series equation amenable to simple numerical calculation. The validity of this result is assured by two limits of relative dielectric constantvarepsilonof the wedge. The total asymptotic field calculated agrees with Rawlins' Neumann series solution for smallvarepsilon, and the edge diffraction pattern is shown to approach that of a perfectly conducting wedge for largevarepsilon. Calculated far-field patterns are presented and the accuracy of physical optics approximation is discussed.  相似文献   

5.
A uniform high-frequency solution is presented for the diffraction by a wedge with impedance faces illuminated by a plane wave perpendicularly incident on its edge. Arbitrary uniform isotropic impedance boundary conditions may be imposed on the faces of the wedge, and both the transverse electric (TE) and transverse magnetic (TM) cases are considered. This solution is formulated in terms of a diffraction coefficient which has the same structure as that of the uniform geometrical theory of diffraction (UTD) for a perfectly conducting wedge. Its extension to the present case is achieved by introducing suitable multiplying factors, which have been derived from an asymptotic evaluation of the exact solution given by Maliuzhinets. When the field point is located on the surface near the edge, a more accurate asymptotic evaluation is employed to obtain a high-frequency expression for the diffracted field, which is suitable for several specific applications. The formulation described in this paper may provide a useful, rigorous basis to search for a more numerically efficient but yet accurate approximation.  相似文献   

6.
High-frequency expressions for the field scattered by a half-plane with a perfectly conducting and an anisotropic impedance face are provided in the format of the uniform geometrical theory of diffraction (UTD), when the half-plane is illuminated by an arbitrarily polarized plane wave obliquely incident on its edge. The loaded face is characterized by a tensor surface impedance with principal anisotropy axes arbitrarily oriented with respect to the edge; a vanishing surface impedance is exhibited in one of the principal directions. This kind of tensor surface impedance can be suitably applied for analyzing the effects on the scattered field of corrugated surfaces or grounded dielectric slabs periodically loaded by metallic strips. This solution extends previous high-frequency formulations valid in those cases in which the direction of corrugations or strips is either parallel or perpendicular to the edge. The analysis is performed by resorting to the Sommerfeld-Maliuzhinets method. To determine the spectral solution, a special function is needed that differs from the standard Maliuzhinets one and was originally introduced to study the electromagnetic scattering by a wedge embedded in a gyroelectric medium.  相似文献   

7.
For pt.I see ibid., vol.37, no.2, p.212-18 (1989). In Part I a rigorous integral representation for the field scattered at a finite distance from the edge of an impedance wedge when it is illuminated by a line source was derived. It was shown that the total field can be expressed as the sum of the geometrical optics (GO) field, the field diffracted by the edge, and terms related to the excitation of surface waves. The double spectral integral representation for the diffracted field was asymptotically evaluated there, in the case in which no surface wave can be supported by the two faces of the wedge. In particular, the high-frequency solution was expressed in the special format of the uniform geometrical theory of diffraction (UTD). Here, field contributions related to the surface wave excitation mechanism are examined. By a convenient asymptotic approximation of the integrals, a high-frequency solution which is uniform with respect to aspects of both incidence and observation is obtained. Moreover, this solution has useful symmetry properties so that it explicitly exhibits reciprocity. Numerical results are presented to show the relevance of the surface wave terms in the evaluation of the field  相似文献   

8.
The scattering from a wedge with nonuniform impedance faces illuminated by a plane wave, perpendicularly incident on its edge, is analyzed. The solution technique is in the framework of perturbative methods; it applies to surface impedances of the wedge faces having the form of a constant plus a small amplitude perturbation which exhibits an exponential dependence on the distance from the edge in a plane transverse to the edge. This is of remarkable importance for applications as it allows the modeling of the actual behavior of the equivalent surface impedance in the special case of wedges coated with dielectric slabs. Uniform asymptotic expressions for the fields are obtained in the context of the uniform geometrical theory of diffraction (UTD)  相似文献   

9.
The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory of diffraction (UTD) so that the asymptotic expressions obtained can be employed in a ray analysis of the scattering from more complex edge geometries located in a dissipative medium. Surface wave excitations at the edge and their propagation along the wedge faces are discussed with particular emphasis on the effects of losses  相似文献   

10.
The asymptotic solution for the diffraction of anE-polarized plane incident electromagnetic wave by a conducting wedge, whose illuminated surface is loaded with a dielectric slab of small thickness and relative permittivity, is employed to derive a ray optical diffraction coefficient for the edge.  相似文献   

11.
A multisegment artificial neural network (ANN) is proposed as an interpolation technique for the evaluation of the electromagnetic field diffracted at the edge of anisotropic impedance wedges under plane wave illumination at oblique incidence. Multisegmentation is needed as the high-frequency wedge diffracted field is characterized by a number of discontinuities at the shadow boundaries of the geometrical optics and surface wave fields. The proposed approach is applied, as a test case, to the problem of an anisotropic impedance right-angled wedge illuminated by a skewly incident plane wave. Some exact analytical solutions valid for specific surface impedance tensors are used to obtain numerical data for the ANN training phase as well as to show the interpolation capabilities of the implemented ANN. Nevertheless, the proposed ANN structure is general and can be trained with data obtained from other available solutions (analytical, perturbative, numerical) valid for more general wedge configurations, eventually leading to a single software tool encompassing all of them and providing accurate approximations of the wedge diffracted field in a relatively short time, comparable to that of a closed form analytical solution.  相似文献   

12.
The interior of a right-angled impedance wedge is a natural model of a corner reflector and is of interest in the development of wireless propagation models. Using a previously-developed solution for the diffraction of a plane wave by a wedge of arbitrary angle, the geometrical optics field is determined and the diffracted field is computed. If an impedance compatibility condition is not met, the geometrical optics field is discontinuous across a plane specified by the edge of the wedge and the incident field direction. The diffracted field is required to compensate for this and its magnitude is proportional to the discontinuity. The field is computed for a variety of impedances and incident angles. Simple analytical approximations are also provided and their accuracy quantified.   相似文献   

13.
We employ the exact solution given by G.D. Maliuzhinets (see Sov. Phys. Doklady, vol.3, p.752-5, 1958) for the canonical problem of diffraction of a plane wave by an arbitrarily angled impedance wedge to derive asymptotic approximations to the field components in a region contiguous to a face of the wedge. The asymptotic solution accounts for terms of order (k/spl rho/)/sup -3/2/ (k is the wave number and /spl rho/ is the distance from the edge), is uniform with respect to observation and illumination aspects and includes the case of grazing illumination of a wedge face, which is known to be particularly difficult for high-frequency analysis (Uflmtsev's singularity).  相似文献   

14.
A uniform asymptotic solution is presented for the electromagnetic diffraction by a wedge with impedance faces and with included angles equal to 0 (half-plane), π/2 (right-angled wedge), π (two-part plane) and 3π/2 (right-angled wedge). The incident field is a plane wave of arbitrary polarization, obliquely incident to the axis of the wedge. The formal solution, which is expressed in terms of an integral, was obtained by the generalized reflection method. A careful study of the singularities of the integrand is made before the asymptotic evaluation of the integral is carried out. The asymptotic evaluation of the integral is performed taking into account the presence of the surface wave poles in addition to the geometrical optics poles near the saddle points. This results in a uniform solution which is continuous acros the shadow boundaries of the geometrical optics fields as well as the surface wave fields  相似文献   

15.
We solve a three-dimensional (3-D) electromagnetic diffraction problem involving an obtuse wedge with penetrable planar faces and an electric dipole which is parallel to the edge of the wedge. The analytical formulation is based on Stratton-Chu (1941) integrals of the electromagnetic field, which is excited by the dipole source on infinitely extending planes that coincide with the faces of the wedge. Fictitious charges are introduced along the edge to account for the discontinuity of the electromagnetic field on the faces across the edge. We evaluate asymptotically the integral expressions for the electric-field intensity far from the edge to obtain uniformly valid formulas. Our first-order physical-optics solution incorporates single reflection from both faces, the lateral wave, the edge-diffracted space wave, the edge-diffracted lateral wave, and transition terms which ensure that the electromagnetic field is finite and continuous at the single-reflection and lateral-wave boundaries. The numerical results establish the validity of this solution through a reciprocity check and comparisons with other analytical solutions  相似文献   

16.
An incremental length diffraction coefficient (ILDC) formulation is presented for the canonical problem of a locally tangent wedge with surface impedance boundary conditions on its faces. The resulting expressions are deduced in a rigorous fashion from a Sommerfeld spectral integral representation of the exact solution for the canonical wedge problem. The ILDC solution is cast into a convenient matrix form which is very simply related to the familiar geometrical theory of diffraction (GTD) expressions for the field on the Keller cone. The scattered field is decomposed into physical optics, surface wave, and fringe contributions. Most of the analysis is concerned with the fringe components; however, the particular features of the various contributions are discussed in detail  相似文献   

17.
Closed-form expressions for nonuniform currents on a perfectly conducting, infinite wedge illuminated by a transverse magnetic plane wave are presented. The expressions are derived by requiring that they agree with the current predicted by the eigenfunction solution close to the edge and J.B. Keller's geometrical theory of diffraction (1962) far from the edge. The angle of incidence is arbitrary and the expressions remain uniformly valid even for glancing angles of incidence when the geometrical optics boundaries are in the vicinity of the wedge faces. The formulas presented are simple, involving Fresnel functions with complex arguments. These functions can be expressed in terms of complimentary error functions which may be computed using standard subroutine packages. Exact expressions for nonuniform currents are available for the two special cases of half-planes and infinite planes. Closed-form expressions for the axial electric field, and hence all the field components in the vicinity of the wedge axes, are also obtained. Currents computed using expressions obtained are compared with currents computed from the eigenfunction solution of the wedge, with good agreement throughout  相似文献   

18.
We study the diffraction by a wedge of an electromagnetic plane wave with skew incidence on the edge, when boundary conditions give us two equations by face with combined electric and magnetic fields. The problem is reduced principally to a non linear scalar functional equation with one unknown. As an example of application, the solution for a wedge with arbitrary angle and relative impedance unity (the most usual model for absorbing material) is given.  相似文献   

19.
Closed-form expressions for nonuniform currents on a perfectly conducting, infinite wedge illuminated by transverse electric (TE) plane wave are presented. These expressions are derived by requiring that they coincide with the current predicted by the asymptotic diffraction method far from the edge and, further, that they agree with the current predicted by the eigenfunction solution at the edge. The angle of incidence is arbitrary and our expressions remain valid even for glancing angles of incidence when either one or both faces of the wedge are in the vicinity of a geometric optic (GO) boundary. Formulas presented here are simple involving the well-known modified Fresnel functions but are not uniform. Exact expressions for nonuniform currents are available for the two special cases of half-plane and infinite plane. For these special cases, our solution reduces to the exact solution. Currents computed using the expressions developed here are compared with currents computed from the eigenfunction solution of the wedge. Good agreement is obtained throughout.  相似文献   

20.
For pt.I see ibid., vol.39, no.9, p.1272-81 (1991). The error of the physical optics solution for the E-polarized plane wave incidence in connection with diffraction by an arbitrary-angled dielectric wedge is corrected by calculating the nonuniform current distributed along the dielectric interfaces. Two kinds of series expansions to the nonuniform current are employed. One is an asymptotic expansion as the multipole line source located at the edge of the dielectric wedge, since the correction field seems to be a cylindrical wave emanating from the edge in the far-field region. The other is arbitrary electric and magnetic surface currents expanded by infinite series of the Bessel functions, i.e. the Neumann expansion, of which fractional order is chosen to satisfy the edge condition near the edge of the dielectric wedge in the static limit. Both of the two different expansion coefficients for a wedge angle of 45°, relative dielectric constants 2, 10, and 100, and the E-polarized incident angle of 150° are evaluated by solving the dual series equation numerically after finite truncation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号