首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of endocrine disrupting chemicals (EDCs) by a laboratory-scale membrane bioreactor (MBR) fed with synthetic sewage was evaluated and moreover, compared with that by a sequencing batch reactor (SBR) operated under same conditions in parallel. Eight kinds of typical EDCs, including 17β-estradiol (E2), estrone (E1), estriol (E3), 17α-ethynilestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), bisphenol A (BPA) and nonylphenol ethoxylates (NPnEO), were spiked into the feed. Their concentrations in influent, effluent and supernatant were determined by gas chromatography-mass spectrometry method. The overall estrogenecity was evaluated as 17β-estradiol equivalent quantity (EEQ), determined via yeast estrogen screen (YES) assay. E2, E3, BPA and 4-OP were well removed by both MBR and SBR, with removal rates more than 95% and no significant differences between the two reactors. However, with regard to the other four EDCs, of which the removal rates were lower, MBR performed better. Comparison between supernatant and effluent of the two reactors indicated that membrane separation of sludge and effluent, compared with sedimentation, can relatively improve elimination of target EDCs and total estrogenecity. By applying different solids retention times (SRTs) (5, 10, 20 and 40 d) to the MBR, 10 and 5 d were found to be the lower critical SRTs for efficient target EDCs and EEQ removal, respectively.  相似文献   

2.
以4种(壬基酚(4-n-NP),双酚A(BPA),雌二醇(E2)、乙炔基雌二醇(EE2))内分泌干扰物(EDCs)为目标物,针对其在城市污水处理厂工艺流程中的分布与去除进行了研究,并进一步实验研究了其去除机理。所有EDCs在城市污水厂进出水中均被检出,进水中平均浓度分别为E2:64.8 ng/L,EE2:171.5 ng/L,4-n-NP:115.4 ng/L,BPA:920.7ng/L;出水中平均浓度分别为E2:22.8 ng/L,EE2:49.9 ng/L,4-n-NP:50.9 ng/L,BPA:84.3 ng/L。污水中EDCs目标物的去除主要来自于生物处理阶段,其去除机理主要是生物降解,生物降解速率与EDCs种类及污泥类型有关。污泥吸附对EDCs的去除可产生一定的影响。  相似文献   

3.
Two estrogen fate and transformation models were integrated with a comprehensive activated sludge model (ASM) to predict estrogen removal based on biomass and solids production. Model predictions were evaluated against published full-scale plant data as well as results from a laboratory-scale sequencing batch reactor (SBR) fed synthetic wastewater. The estrogen fate model relating the rate of total estrogen degradation to soluble estrogen concentrations successfully predicted estrogen removals when compared with measured concentrations. Model fit 17α-ethinylestradiol (EE2) biodegradation rate constant was 19 to 43% of the estrone (E1) value and 31 to 72% of the 17β-estradiol (E2) value.  相似文献   

4.
Anaerobic biodegradation of estrogens--hard to digest.   总被引:1,自引:0,他引:1  
Although many publications are available on the fate of estrone (E1), 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) during aerobic wastewater treatment, little is published on their fate under strictly anaerobic conditions. Present research investigated the digestibility of E1 and EE2, using digested pig manure, granular UASB sludge, UASB-septic tank sludge and activated sludge as inocula. Besides, actual concentrations were measured in a UASB septic tank treating black water. Under anaerobic conditions E1 is reduced to E2 but the extent of this reduction depends on type of inoculum. No significant loss of the sum of E1 and E2 and of EE2 was observed. Adsorption was responsible for a 32-35% loss of E1 and E2 from the liquid phase in the UASB septic tank and the effluent still contained considerable concentrations of respectively 4.02 microg/l and 18.79 microg/l for E1 and E2 with a large fraction present in conjugated form. No EE2 was detected in the UASB effluent.  相似文献   

5.
The fate and behavior of natural and synthetic estrogens in wastewater treatment processes is currently of increasing concern all over the world. In this study, the removal mechanisms of a natural estrogen, 17β-estradiol (E2), and a synthetic estrogen, 17α-ethinylestradiol (EE2) were investigated in membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. The experimental results showed that the average removal rates of E2 and EE2 by the MBR without PAC addition were 89.0 and 70.9%; PAC addition in the MBR increased the removal rate of E2 and EE2 by 3.4 and 15.8%, respectively. The greater impact of PAC dosing on EE2 removal was due to its greater hydrophobic property. Adsorption played a more important role in the removal mechanisms of EE2 than E2. Biodegradation was the dominant mechanism for the removal of E2 and EE2 in MBRs. Unlike their adsorption behavior, the biodegradation rates of both E2 and EE2 were not significantly different between the MBRs with and without PAC addition.  相似文献   

6.
The purpose of this paper is to report the study of the fate and distribution of three endocrine disrupting compounds (estrogens); Estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) in a laboratory scale submerged membrane bioreactor (SMBR). For this matter, both aqueous and solids phases were analyzed for the presence of E1, E2 and EE2. The outcome of this study was that three SMBRs showed enhanced elimination of estrogens in different operational conditions; the estrogen removal was close to 100% in SMBR. Additionally, E1, E2 and EE2 were detected in SMBR sludge at concentrations of up to 41.2, 37.3 and 36.9 ng g(-1) dry weight, respectively. The estrogen removal in the SMBRs was directly influenced by a combination of simultaneous biodegradation-adsorption processes, indicating that the main removal mechanism of the estrogens in the SMBRs is the biodegradation process. The E1, E2 and EE2 were biologically degraded in the SMBR (87-100%). The sorption of estrogens onto activated sludge was from 2%. Therefore, a high potential for estrogen removal by biodegradation in the SMBR was observed, allowing less estrogen concentration in the dissolved phase available for the adsorption of these compounds onto biological flocs. Two different methods were carried out for mass balance calculations of estrogens in SMBR. For the first method, the measured data was used in both liquid and solid phases, whereas for the second one, it was in aqueous phase and solid-water distribution coefficients (K(d)) value of E1, E2 and EE2. The purpose of these methodologies is to make easier the identification of the main mechanisms involved in the removal of E1, E2 and EE2 in a SMBR. Both methods can be applied in order to determine the mechanism, fate and distribution of estrogens in a SMBR.  相似文献   

7.
The fate of oestrone (E1), 17beta-oestradiol (E2) and 17alpha-ethynyloestradiol (EE2) was investigated in a concentrated blackwater treatment system consisting of an UASB septic tank, with micro-aerobic post-treatment. In UASB septic tank effluent a (natural) total concentration of 4.02 microg/L E1 and 18.69 microg/L E2, comprising the sum of conjugated (>70% for E1 and >80% for E2) and unconjugated forms, was measured. During post-treatment the unconjugated oestrogens were removed to below 1 microg/L. A percentage of 77% of the measured unconjugated E1 and 82% of E2 was associated with particles >1.2 microm in the final effluent implying high sorption affinity of both compounds. When spiking the UASB septic tank effluent with E1, E2, EE2 and the sulphate conjugate of E2, removal in the micro-aerobic post-treatment was >99% for both E2 and EE2 and 83% for E1. The lower removal value for E1 was a result of (slow) deconjugation during the treatment, and in the final effluent still 40% of E1 and 99% of E2 was present in conjugated form. The latter was the result of incomplete deconjugation of the spiked E2(3S) in the post-treatment system.  相似文献   

8.
Due to rising concern regarding the presence of endocrine-disrupting chemicals (EDCs) in surface water and groundwater throughout the United States, Asia and Europe, treatment of these chemicals in drinking water and wastewater to protect human health and the environment is an area of great interest. Many conventional treatment schemes are relatively ineffective in removing EDCs from water and wastewater. This is concerning because these chemicals are biologically active at very low concentrations and effects of mixtures are relatively unknown. 17-alpha-oestradiol (E2) and 17-beta-ethinyl-oestradiol (EE2), suspected EDCs, were degraded significantly by the UV/H2O2 AOP. The UV/H2O2 processes using either low or medium pressure lamps were degraded EDCs by between 80 and 99.3% at a 15 ppm H2O2 concentration and a UV dose of 1,000 mJ/cm2. Significantly greater removal was noted when the removal was based on total oestrogenic activity using a yeast oestrogen screen (YES) assay. These data indicated that a dose of less than 200 mJ/cm2 completely removed oestrogenic activity in lab water. Values for natural waters were slightly higher. A steady state model was developed to determine EDC destruction efficiency in waters of differing quality. The model effectively predicted destruction in water, where concentrations of all scavenging species were known. Based on these results it was concluded than complete destruction of oestrogenic activity was possible under practical advanced oxidation conditions for a variety of water qualities.  相似文献   

9.
A submerged flat metal MBR (membrane bioreactor) was used to treat synthetic domestic sewage in this study. The experiment was continued for 270 days and ran under two modes as AMBR (aerobic membrane bioreactor) and A/O-MBR (anoxic/aerobic membrane bioreactor) at a permeate flux of 0.4-1 m3/(m2 d). PVA (polyvinyl alcohol) gel beads were added to the aeration tank with a volume ratio of 10% at the end of the A/O-MBR mode. The mean COD and TN removal efficiencies achieved 96.69 and 32.12% under the AMBR mode, and those were 92.17 and 72.44% under the A/O-MBR mode, respectively. SND (simultaneous nitrification and denitrification) occurred at high MLSS (mixed liquor suspended solids) concentration. The metal membranes reduced effluent COD during filtration. The system ran stably for 115 days at a permeate flux of 0.8-1 m3/(m2 d) without changing membranes under the AMBR mode, but the membrane filterability decreased gradually under high MLSS or A/O-MBR mode, and the addition of PVA worsened the membrane filterability on the contrary. PSD (particle size distribution) and sludge fractions had evident influence on membrane fouling. The main fouling mechanism was cake formation under the AMBR mode, and that was pore blocking under the A/O-MBR mode.  相似文献   

10.
The removal of a synthetic estrogen 17α-ethinylestradiol (EE2) was investigated in submerged membrane bioreactors (MBRs) with simultaneous nitrification-denitrification (SND) and conventional nitrification. The influent EE2 concentration was 500 ng/L as EE2. Using a yeast estrogen screen test, the conventional-MBR (C-MBR) and SND MBR (SND-MBR) removed 57 and 58% of the estrogenic activity (EA) respectively; there was no significant difference in their removal efficiencies. Biodegradation was the dominant removal mechanism for both reactors with K(BIO) coefficients of 1.5 ± 0.6 and 1.6 ± 0.4 day(-1) for the C-MBR and the SND-MBR respectively. Sorption to solid particles removed approximately 1% of influent EA in each reactor; the particle partitioning coefficient, K(D), was calculated to be 0.21 ± 0.07 L/(g MLSS) for the C-MBR and 0.27 ± 0.1 L/(g MLSS) for the SND-MBR. These findings suggest that conditions favoring SND in MBRs have no significant impact on EA reduction.  相似文献   

11.
The paper expresses an attempt to tackle the problem due to the presence of micropollutants in wastewater which may be able to disrupt the endocrine system of some organisms. These kinds of compounds are ubiquitously present in municipal wastewater treatment plant (WWTP) effluents. The aim of this paper is to compare the fate of the alkylphenols-APs (4-(tert-octyl)) phenol, t-nonylphenol and 4-p-nonylphenol and the hormones (estrone, 17β-estradiol and 17α-ethinylestradiol) in a submerged anaerobic membrane bioreactor (SAMBR) pilot plant and in a conventional activated sludge wastewater treatment plant (CTP). The obtained results are also compared with the results obtained in a previous study carried out in an aerobic MBR pilot plant. The results showed that the APs soluble concentrations in the SAMBR effluent were always significantly higher than the CTP ones. Moreover, the analyses of the suspended fraction revealed that the AP concentrations in the SAMBR reactor were usually higher than in the CTP reactor, indicating that under anaerobic conditions the APs were accumulated in the digested sludge. The aerobic conditions maintained both in the CTP system and in the aerobic MBR favoured the APs and hormones degradation, and gave rise to lower concentrations in the effluent and in the reactor of these systems. Furthermore, the results also indicated that the degradation of APs under aerobic conditions was enhanced working at high solid retention time (SRT) and hydraulic retention time (HRT) values.  相似文献   

12.
This paper demonstrates that synthetic endocrine disrupting chemicals (EDCs) (e.g. bisphenol-A) and natural EDCs (e.g. estrone and 17beta-estradiol) were found in the crude sewage from two sewage treatment works. Conventional biological processes can lower EDC concentrations to several hundred nanograms per litre. Because natural EDCs (e.g. estrone and 17beta1-estradiol) have biological activity and an adverse impact on the environment at extremely low concentrations (several tens of nanograms per litre), and because the existing wastewater/sewage treatment processes are not adequate to reduce natural EDC concentrations lower than 100 ng L(-1), further treatment after conventional biological processes is required. Preliminary trials with ferrate (VI) and electrochemical oxidation processes demonstrated that the former is more effective than the latter in reducing EDC concentrations, and that both the processes can effectively reduce EDCs to very low levels, ranging between 20 and 100 ng L(-1).  相似文献   

13.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

14.
A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145 +/- 5 mW/m2, 470 omega) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190 +/- 5 mW/m2. The corresponding total chemical oxygen demand (TCOD) removal efficiency was 78.1 +/- 0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g-TCOD/L, where 290 mw/m2 was achieved. When effluents from an anaerobic digester that was fed with raw sludge were used as substrate in the SMFC, a maximum power density of 318 mW/m2, and a final TCOD removal of 71.9 +/- 0.2% were achieved. These results have practical implications for development of an effective system to treat sewage sludge and simultaneously recover energy.  相似文献   

15.
There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.  相似文献   

16.
A major limitation of anaerobic sludge digestion is the long hydraulic retention time (HRT) required for satisfactory stabilization which results in large digester size. This study explored a possibility of operating digesters at shortened HRTs by sonication pretreatment of secondary sludges. Four identical digesters designated D1, D2, D3 and D4 were fed with untreated and sludge sonicated at densities of 0.18 W/ml, 0.33 W/ml and 0.52 W/ml, respectively. All digesters were operated at three HRTs of 8-day, 4-day and 2-day. Comparing with the control digester (D1), total solids removal efficiencies improved by 12-19%, 17-36% and 20-39% in digesters D2, D3 and D4, respectively. The volatile solids removal was also increased by 11-21%, 17-33% and 19-36% in the respective digesters. The improved solids degradation corresponded with increase in biogas production by 1.4-2.5, 1.9-3.0 and 1.6-3.1 times, respectively. Increase in methane composition by 2-17% was also noted in all digesters fed with sonicated sludge. An analysis indicated that sonication pretreatment could enhance degradation of carbon, nitrogen and sulfur substances in the digestion. The study suggested that sonication of sludge is a possible pretreatment to shorten the digester operating HRT with improvement in solids degradation, biogas production and methane content. It can be deduced that to maintain a consistent solids loading at a desire performance, sludge digester with smaller size can be designed.  相似文献   

17.
In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.  相似文献   

18.
From an experimental and theoretical investigation of the continuity of influent inorganic suspended solids (ISS) along the links connecting the primary settling tank (PST), fully aerobic or N removal activated sludge (AS) and anaerobic and aerobic sludge digestion unit operations, it was found that the influent wastewater (fixed) ISS concentration is conserved through primary sludge anaerobic digestion, activated sludge and aerobic digestion unit operations. However, the measured ISS flux at different stages through a series of wastewater treatment plant (WWTP) unit operations is not equal to the influent ISS flux, because the ordinary heterotrophic organisms (OHO) biomass contributes to the ISS flux by differing amounts depending on the active fraction of the VSS solids at that stage.  相似文献   

19.
Agricultural application of municipal sewage sludge has been emotionally discussed in the last decades, because the latter contains endocrine disrupting chemicals (EDCs) and other organic micropollutants with unknown fate and risk potential. Bisphenol A (BPA) was chosen as a model substance to investigate the influence of sludge conditioning on the end-concentration of EDCs in sludge. Adsorption studies with radioactive-labelled BPA showed that more than 75% BPA in anaerobically digested sludge is bound to solids (log Kd = 2.09-2.30; log Koc = 2.72-3.11). Sludge conditioning with polymer or iron (III) chloride alone had no influence on the adsorption of BPA. After conditioning with iron (III) chloride and calcium hydroxide desorption of BPA took place. Apparently, it occurred due to the deprotonation of BPA (pKa= 10.3) as the pH-value reached 12.4 during the process. The same behaviour is expected for other phenolic EDCs with similar pKa (nonylphenol, 17beta-estradiol, estron, estriol, 17alpha-ethinylestradiol). This study shows high affinity of BPA to the anaerobically digested sludge and importance of conditioning in the elimination of EDCs during the sludge treatment. Addition of polymer is favourable in the case of sludge incineration. Conditioning with iron (III) chloride and calcium hydroxide shows advantages for the use of sludge as fertiliser.  相似文献   

20.
The performance of a novel high-rate anaerobic process, the anaerobic digestion elutriated phased treatment (ADEPT) process, for treating a slurry-type piggery waste (55 g COD/L and 37 g TS/L) was investigated. The ADEPT process consists of an acid elutriation slurry reactor for hydrolysis and acidification, followed by an upflow anaerobic sludge bed reactor for methanification. This process provides stable and high system performance with short HRT (7.4 d) and better effluent quality (2 g SCOD/L and 0.68 g VSS/L) due to the alkaline pH condition for hydrolysis/acidification phase, high refractory solids removal and ammonia toxicity reduction. The optimum pH and HRT for hydrolysis/acidogenesis of the piggery waste were 9 and 5 days at both 35 degrees C and 55 degrees C conditions. The hydrolysis and acidification rate in the mesophilic reactor were 0.05 d(-1) and 0.11 d(-1), meaning that hydrolysis was a limiting step. SCOD production by the hydrolysis was about 0.26 g SCOD/g VS(fed) (3.6 g SCOD/g VS reduction). Methane production and content in the system were 0.3 L CH4/g VS(fed) (0.67 L CH4/g VS destroyed) and 80%, respectively, corresponding to 0.23 L CH4/g COD removal (@STP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号