首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ∼5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at ∼4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.  相似文献   

2.
Phase pure spinel LiMn2O4 nanoparticles can be directly synthesized by one-step hydrothermal reaction of γ-MnO2 with LiOH in an initial Li/Mn ratio of 1 at 200 °C. The reaction might involve a redox reaction between Mn4+ and OH, and the formation of LiMn2O4 at the same time under the proposed hydrothermal conditions. This hydrothermal process is simple since only γ-MnO2 powders are used as the Mn source, whereas without use of any oxidants, reductants, or low valence Mn source. The electrochemical performance of the as-synthesized LiMn2O4 nanoparticles towards Li+ insertion/extraction was examined. Rather good capacity and cycle performance, and an especially excellent high rate capability, were observed for the sample that was hydrothermally reacted for 3 days.  相似文献   

3.
Spinel-typed LiMn2O4 cathode active materials have been prepared for different microstructures by the melt-impregnation method using different forms of manganese. The effect of the starting materials on the microstructure and electrochemical properties of LiMn2O4 is investigated by X-ray diffraction, scanning electron microscopy, and electrochemical measurements. The powder prepared from nanostructured γ-MnOOH, with good crystallinity and a regular cubic spinel shape, provided an initial discharge capacity of 114 mAh g−1 with excellent rate and high capacity retention. These advantages render LiMn2O4 attractive for practical and large-scale applications in mobile equipment.  相似文献   

4.
One-dimensional alpha manganese dioxide (α-MnO2) nanorods synthesized by a hydrothermal route were explored as the starting material for preparing lithium manganese spinel LiMn2O4. Pure and highly crystalline spinel LiMn2O4 was easily obtained from α-MnO2 nanorods through a low-temperature solid-state reaction route, while Mn2O3 impurity was present along with the spinel phase when commercial MnO2 was used as starting material. The particle size of LiMn2O4 prepared from α-MnO2 nanorods was about 100 nm with a homogenous distribution. Electrochemical tests demonstrated that the LiMn2O4 thus prepared exhibited a higher capacity than that prepared from commercial MnO2. Therefore, α-MnO2 nanorods are proved to be a promising starting material for the preparation of high quality LiMn2O4.  相似文献   

5.
The electrochemical properties and crystal structure of LiMn1.5Ni0.5O4 treated with supersonic waves in an aqueous Ni-containing solution were investigated by performing charge-discharge tests, inductively coupled plasma (ICP) analysis, scanning electron microscopy (SEM), iodometry, X-ray diffraction (XRD), powder neutron diffraction and synchrotron powder XRD. The charge-discharge curve of LiMn1.5Ni0.5O4 versus Li/Li+ has plateaus at 4.1 and 4.7 V. The 4.1 V versus Li/Li+ plateau due to the oxidation of Mn3+/4+ was reduced by the supersonic treatment. During the charge-discharge cycling test at 25 °C, the supersonic treatment increased the discharge capacity of the 50th cycle. Rietveld analysis of the neutron diffraction patterns revealed that the Ni occupancy of the 4b site in LiMn1.5Mn0.5O4, which is mainly occupied by Ni, was increased by the supersonic treatment. This result suggests that Ni2+ is partially substituted for Mn3+/4+ during the supersonic treatment.  相似文献   

6.
A nanostructured spinel LiMn2O4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O) and citric acid (C6H8O7·H2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn2O4 electrodes in 2 M Li2SO4, 1 M LiNO3, 5 M LiNO3 and 9 M LiNO3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn2O4 electrode in 5 M LiNO3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.  相似文献   

7.
A porous spherical aggregation of Li4Mn5O12 nanorods with the particle size of 3 μm is prepared by oxidizing LiMn2O4 powder with (NH4)2S2O8 under hydrothermal conditions. The result displays that concentration of (NH4)2S2O8 plays a key role in forming the porous spherical aggregation and the optimal concentration of oxidant is found to be 1.5 mol L−1. The mechanism for the formation of the porous spherical aggregation is proposed. The electrochemical capacitance performance is tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge. The porous spherical aggregation exhibits a good electrochemical performance. It could deliver 375 F g−1 within potential range 0-1.4 V at a scan rate of 5 mV s−1 in 1 mol L−1 Li2SO4 and the value is cut down to less than 0.024 F g−1 per cycling period in 1000 cycles.  相似文献   

8.
Spinel powders of LiMn1.99Nd0.01O4 have been synthesized by chemical synthesis route to prepare cathodes for Li-ion coin cells. The structural and electrochemical properties of these cathodes were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, cyclic voltammetry, and charge-discharge studies. The cyclic voltammetry of the cathodes revealed the reversible nature of Li-ion intercalation and deintercalation in the electrochemical cell. The charge-discharge characteristics for LiMn1.99Nd0.01O4 cathode materials were obtained in 3.4–4.3 V voltage range and the initial discharge capacity of this material were found to be about 149 mAh g−1. The coin cells were tested for up to 25 charge-discharge cycles. The results show that by doping with small concentration of rare-earth element Nd, the capacity fading is considerably reduced as compared to the pure LiMn2O4 cathodes, making it suitable for Li-ion battery applications.  相似文献   

9.
A nanosized LiMn2O4 (nano-LiMn2O4) spinel was prepared by a novel route using a porous silica gel as a sacrificial hard template. This material was found to be made up of 8–20 nm nanoparticles with a mean crystallite size of 15 nm. The electrochemical properties of nano-LiMn2O4 were tested in lithium cells at different cycling rates and compared to those of microsized LiMn2O4 (micro-LiMn2O4) obtained by the classical solid state route. Microsized LiMn2O4 is formed by 3–20 μm agglomerates, the size of each individual particle being approximately 0.20 μm. The behaviour of nano-LiMn2O4 as a positive electrode improves with increasing current densities (from C/20 to 2C). Moreover, it was found to exhibit a noticeably better performance at high rates (2C), with higher initial capacity values and very good retention (only 2% loss after 30 cycles), with respect to micro-LiMn2O4, almost certainly due to enhanced lithium diffusion in the small particles.  相似文献   

10.
LiMn2O4 epitaxial thin films were synthesized on SrTiO3:Nb(1 1 1) and Al2O3(0 0 1) single crystal substrates by pulsed laser deposition (PLD) method and the electrochemical properties were discussed comparing with that of amorphous LiMn2O4 film on polycrystalline Au substrate. LiMn2O4 epitaxial film showed only a single plateau in charge–discharge curves and a single redox peak at the corresponding voltage of cyclic voltammograms. This phenomenon seems to originate from the effect of the epitaxy: the film is directly connected with the substrate by the chemical bond and this connection would suppress the phase transition of LixMn2O4 film during lithium (de-)intercalation. The discharge voltage of LiMn2O4 epitaxial film on SrTiO3 was lower than that of LiMn2O4 film on Al2O3. This lowered discharge voltage may be caused by the electronic interaction between LiMn2O4 film and SrTiO3:Nb n-type semiconductor substrate.  相似文献   

11.
Lithium difluoro(oxalato)borate (LiODFB) was investigated as a lithium salt for non-aqueous electrolytes for LiMn2O4 cathode in lithium-ion batteries. Linear sweep voltammetry (LSV) tests were used to examine the electrochemical stability and the compatibility between the electrolytes and LiMn2O4 cathode. Through inductively coupled plasma (ICP) analysis, we compared the amount of Mn2+ dissolved from the spinel cathode in 1 mol L−1 LiPF6/EC + PC + EMC (1:1:3 wt.%) and 1 mol L−1 LiODFB/EC + PC + EMC (1:1:3 wt.%). AC impedance measurements and scanning electron microscopy (SEM) analysis were used to analyze the formation of the surface film on the LiMn2O4 cathode. These results demonstrate that ODFB anion can capture the dissolution manganese ions and form a denser and more compact surface film on the cathode surface to prevent the continued Mn2+ dissolution, especially at high temperature. It is found that LiODFB, instead of LiPF6, can improve the capacity retention significantly after 100 cycles at 25 °C and 60 °C, respectively. LiODFB is a very promising lithium salt for LiMn2O4 cathode in lithium-ion batteries.  相似文献   

12.
The compatibility between dimethyl methylphosphonate (DMMP)-based electrolyte of 1 M LiPF6/EC + DMC + DMMP (1:1:2 wt.) and spinel materials Li4Ti5O12 and LiNi0.5Mn1.5O4 was reviewed, respectively. The cell performance and impedance of 3-V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion cell with the DMMP-based nonflammable electrolyte was compared with the baseline electrolyte of 1 M LiPF6/EC + DMC (1:1 wt.). The nonflammable DMMP-based electrolyte exhibited good compatibility with spinel Li4Ti5O12 anode and high-voltage LiNi0.5Mn1.5O4 cathode, and acceptable cycling performance in the LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell, except for the higher impedance than that in the baseline electrolyte. All of the results disclosed that the 3 V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion battery was a promising choice for the nonflammable DMMP-based electrolyte.  相似文献   

13.
We investigated the formation of LiMn2O4 phases by calcinating a stoichiometric mixture of Li2CO3 and various manganese compounds with high temperature X-ray diffraction (HT-XRD) technique to understand the influence of starting materials on the electrochemical performance. XRD measurements were carried out during heating processes from room temperature to 700 °C. In case of Li2CO3/electrolytic manganese dioxide and Li2CO3/MnCO3 mixtures used as starting materials, Li0.33MnO2 phase and low crystalline phase, respectively, appeared as intermediate products during heating process followed by the crystallization into the spinel. HT-XRD observation confirmed that the LiMn2O4 phase was directly formed from starting Li2CO3/Mn2O3 and Li2CO3/Mn3O4 mixtures. The reactivity of the mixture, meant by the lower reaction temperature between Li and Mn compounds and the faster evolution of Li–Mn–O phase, depended on manganese compounds. The purity and stoichiometry of spinel type LiMn2O4 was not achieved only by the higher reactivity. From these results, the dependence of reversible capacities and cycleability of synthesized LiMn2O4s on the formation process which varied with the starting materials was discussed.  相似文献   

14.
The structural changes of pristine and ZrO2-coated LiMn0.5Ni0.5O2 cathode materials were investigated by using in situ X-ray diffraction (XRD) during charging process. An obviously solid solution phase transition from a hexagonal structure (H1) to another hexagonal structure (H2) was observed during the charging process at a constant current of 0.3 mA in the potential range of 2.5–5.7 V. The second hexagonal structure has a shorter a-axis and a longer c-axis before the crystal collapse. Before the structure collapses the c-axis length increases to maximum and then significantly decreases to 14.1 Å. The c-axis length of the pristine and ZrO2-coated LiMn0.5Ni0.5O2 increases to the maximum at the charge capacity of 119.2 and 180.9 mAh g−1, respectively. It can be concluded that the ZrO2 coating can strongly stabilize the crystal structure of the LiMn0.5Ni0.5O2 compound from the comparison of the lattice parameter variations between the pristine and the ZrO2-coated LiMn0.5Ni0.5O2 compounds upon charge. The potential fluctuation resulting from the decomposition of electrolytes starts at the charge capacity of around 200 and 260 mAh g−1 for the pristine and ZrO2-coated LiMn0.5Ni0.5O2, respectively. It suggests that the ZrO2 coating layer can impede the reaction between the cathode material and electrolyte.  相似文献   

15.
A novel method to produce LiMn2O4/carbon nanocomposites in a rapid, one-step and industrially scalable process is presented. A flame spray and a diffusion flame are combined to continuously produce LiMn2O4 nanoparticles and carbon black, respectively. Powder carbon content is varied by adjusting the diffusion flame conditions. The powders are characterized by X-ray diffraction (XRD), transmission electron microscopy, cyclic voltammetry and galvanostatic cycling for a range of current densities. These LiMn2O4/carbon nanocomposites retain over 80% of their initial galvanostatic discharge capacity for current densities ranging from 5 to 50C-rates, significantly better than pure LiMn2O4 nanoparticles mixed conventionally with commercial carbon blacks. The improved performance of the LiMn2O4/carbon nanocomposites is attributed to the carbon particle contact and/or film coating of the freshly-made LiMn2O4 nanoparticles. This additional well-distributed carbon provides an electrically conductive network that induces a more homogeneous charge transfer throughout the electrode. The suitability of these nanocomposites as a hybrid material is discussed by considering the layout of a thin-layer lithium-ion battery containing these flame-made nanocomposites as positive electrode and LiC6 as negative electrode. The battery’s specific energy is calculated to be 78 Wh kg−1 (50C-rate) based on the results of lithium-ion insertion capacity experiments and reasonable engineering assumptions on the lithium-ion battery design.  相似文献   

16.
The present work deals with the photoelectrochemical hydrogen production over the spinel ZnCr2O4. The photoactivity is dependent on the synthesis conditions and the oxide has been prepared by nitrate way in order to produce homogeneous powder with large active surface. The transport properties indicate p-type conductivity with activation energy of 0.21 eV. A corrosion potential of 0.404 VSCE and an exchange current density of 50 μA cm−2 have been determined from the semi logarithm plot. The photocurrent onset potential, assimilated to the flat band potential, was found to be −0.39 VSCE. ZnCr2O4/S2O32− is a self driven system where absorption of light promotes electrons into the conduction band with a potential (−1 V) sufficient to reduce water into hydrogen. The activity shows a tendency toward saturation whose deceleration is the result of the competitive reductions of end products namely S2O62− and S2O42− with water. A comparative study with CuCr2O4 is reported.  相似文献   

17.
A composite electrode between three-dimensionally ordered macroporous (3DOM) Li0.35La0.55TiO3 (LLT) and LiMn2O4 was fabricated by colloidal crystal templating method and sol–gel process. A close-packed PS beads with the opal structure was prepared by filtration of a suspension containing PS beads. Li–La–Ti–O sol was injected by vacuum impregnation process into the voids between PS beads, and then was heated to form 3DOM-LLT. Three-dimensionally ordered composite material consisting of LiMn2O4 and LLT was prepared by sol–gel process. The prepared composite was characterized with SEM and XRD. All solid-state Li-ion battery was fabricated with the LLT–LiMn2O4 composite electrode as a cathode, dry polymer electrolyte and Li metal anode. The prepared all solid-state cathode exhibited a volumetric discharge capacity of 220 mAh cm−3.  相似文献   

18.
The high voltage layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material, which is a solid solution between Li2MnO3 and LiMn0.4Ni0.4Co0.2O2, has been synthesized by co-precipitation method followed by high temperature annealing at 900 °C. XRD and SEM characterizations proved that the as prepared powder is constituted of small and homogenous particles (100-300 nm), which are seen to enhance the material rate capability. After the initial decay, no obvious capacity fading was observed when cycling the material at different rates. Steady-state reversible capacities of 220 mAh g−1 at 0.2C, 190 mAh g−1 at 1C, 155 mAh g−1 at 5C and 110 mAh g−1 at 20C were achieved in long-term cycle tests within the voltage cutoff limits of 2.5 and 4.8 V at 20 °C.  相似文献   

19.
Manganese oxide with high tap density was prepared by decomposition of spherical manganese carbonate, and then LiMn2O4 cathode materials were synthesized by solid-state reaction between the manganese oxide and lithium carbonate. Structure and properties of the samples were determined by X-ray diffraction, Brunauer–Emmer–Teller surface area analysis, scanning electron microscope and electrochemical measurements. With increase of the decomposition temperature from 350 °C to 900 °C, the tap density of the manganese oxide rises from 0.91 g cm−3 to 2.06 g cm−3. Compared with the LiMn2O4 cathode made from chemical manganese dioxide or electrolytic manganese dioxide, the LiMn2O4 made from manganese oxide of this work has a larger tap density (2.53 g cm−3), and better electrochemical performances with an initial discharge capacity of 117 mAh g−1, a capacity retention of 93.5% at the 15th cycle and an irreversible capacity loss of 2.24% after storage at room temperature for 28 days.  相似文献   

20.
Sub-micro spinel LiNi0.5−xMn1.5+xO4 (x < 0.1) cathode materials powder was successfully synthesized by the ultrasonic-assisted co-precipitation (UACP) method. The structure and electrochemical performance of this as-prepared powder were characterized by powder XRD, SEM, XPS, CV and the galvanostatic charge–discharge test in detail. XRD shows that there is a small LiyNi1−yO impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5−xMn1.5+xO4, and the powders are well crystallized. XPS exhibits that the Mn oxidation state is between +3 and +4, and Ni oxidation state is +2 in LiNi0.5−xMn1.5+xO4. SEM shows that the prepared powders (UACP) have the uniform and narrow size distribution which is less than 200 nm. Galvanostatic charge–discharge test indicates that the initial discharge capacities for the LiNi0.5−xMn1.5+xO4 (UACP) at C/3, 1C and 2C, are 130.2, 119.0 and 110.0 mAh g−1, respectively. After 100 cycles, their capacity retentions are 99.8%, 88.2%, and 73.5%, respectively. LiNi0.5−xMn1.5+xO4 (UACP) at C/3 discharge rate exhibits superior capacity retention upon cycling, and it also shows well high current discharge performance. CV curve implies that LiNi0.5−xMn1.5+xO4 (x < 0.1) spinel synthesized by ultrasonic-assisted co-precipitation method has both reversibility and cycle capability because of the ultrasonic-catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号