首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports analytical relations for the thermodynamic properties enthalpy, entropy, heat capacities at constant pressure and temperature of the replacement refrigerants R-123 and R-134a. These refrigerants are considered promising as substitutes for the fluids R-11 and R-12, respectively, which are two of the most widely used CFC refrigerants. In addition to the properties, the three real gas isentropic exponents kp,v,kv,T, kp,T are calculated, which may be used instead of the classical exponent k=cp/cv in the ideal gas isentropic change equations to describe with good accuracy the real gas behaviour. A systematic study to research the influence of various parameters on heat transfer during condensation of R-123 and R-134a on horizontal integral-fin tubes is also carried out. The results are useful in refrigeration applications to improve the basic design, as a significant concern about new refrigerants to replace the CFCs has increased very rapidly due to the destruction of stratospheric ozone and global warming. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
An extended study of c-Si cell performance under transient conditions for various concentration ratios, C, between 0.6 and 12.25 is presented. PV cell temperature, Tc, open-circuit voltage, Voc, and short-circuit current, Isc, were measured using an experimental set-up based on a solar light simulator. The dependence of Voc, Isc, dVoc/dTc, dIsc/dTc and rs on Tc was investigated against C. A model was developed to predict Tc. Generalised formulae were proposed for prediction of Voc and Isc. Theoretically obtained Tc and Voc profiles were compared with the measured ones. A good agreement was observed. The time constants of Voc and Tc profiles were determined experimentally for various C values and lie within ±5% from theoretically predicted time constants. The coefficient dVoc/dTc was determined for various C values. The results show a decrease in the absolute value of dVoc/dTc against C. A partial recovery of PV cell performance through a ventilation process was tried.  相似文献   

3.
《Applied Thermal Engineering》2007,27(14-15):2559-2565
This paper presents the new ternary non-azeotropic mixture of R32/R125/R161 as an alternative refrigerant to R407C. The physical properties of the ternary mixture are similar to those of R407C, and it is environmental friendly, that is, it has zero ozone-depletion potentials (ODP) and lower global warming potentials (GWP) than R407C. Theoretical cycle performances of R32/R125/R161 and R407C are calculated and analyzed firstly. Based on the theoretical study, experimental tests are performed on a vapor-compression refrigeration system with a rotor compressor which was originally designed for R407C (without any modifications to system components for R407C). Experimental results under different working conditions indicate that the pressure ratio and power consumption of the new refrigerant are lower than those of R407C, and its refrigerating capacity and coefficient of performance (COP) are superior to those of R407C, respectively, and its discharge temperature is slightly higher than that of R407C. Therefore, the new refrigerant R32/R125/R161 could be considered as a promising refrigerant to R407C.  相似文献   

4.
ABSTRACT

The second law of thermodynamics asserts that heat will always flow “downhill”, i.e., from an object having a higher temperature to one having a lower temperature. For a parabolic rigid heat conductor with a single temperature T and a single heat-flux q this amounts to the statement that the inner product of q and ?T must be non-positive for every point x of the conductor and for every non-negative time t. For a homogeneous and isotropic body in which classical Fourier law with a heat conductivity coefficient k is postulated, the second law is satisfied if k is a positive parameter. For ultra-fast pulse-laser heating on metal films, a parabolic two-temperature model coupling an electron temperature Te with a metal lattice temperature Tl has been proposed by several authors. For such a model, at a given point of space x and a given time t there are two different temperatures Te and Tl as well as two different heat-fluxes q e and q l related to the gradients of Te and Tl, respectively, through classical Fourier law. As a result, for a homogeneous and isotropic model the positive definiteness of the heat conductivity coefficients ke and kl corresponding to Te and Tl, respectively, implies that the second law of thermodynamics is satisfied for each of the pairs (Te, q e) and (Tl, q l), separately. Also, the positive definiteness of ke and kl, and of the corresponding heat capacities ce and cl as well as of a coupling factor G imply that a temperature initial-boundary value problem for the two-temperature model has unique solution. In the present paper, an alternative form of the second law of thermodynamics for the two-temperature model with kl = 0 and q l =  0 is obtained from which it follows that in a one-dimensional case the electron heat-flux qe(x, t) has direction that is opposite not only to that of ?Te(x, t)/?x but also to that of ?Tl(x, t + τT)/?x, where τT is an intrinsic small time of the model. Also, for a general two-temperature rigid heat conductor in which ke, kl, ce, cl, and G are positive, an inequality of the second law of thermodynamics type involving a pair (Te ? Tl, q e ?  q l) is postulated to prove that a two-heat-flux initial-boundary value problem of the two-temperature model has a unique solution. For a one-dimensional case, the semi-infinite sectors of the plane ( q l, q e) over which uniqueness does not hold true are also revealed.  相似文献   

5.
This paper presents an experimental investigation of a direct expansion air conditioner working with R407C as an R22 alternative. Experiments are conducted on a vapor compression refrigeration system using air as a secondary fluid through both the evaporator and the condenser. The influences of the evaporator air inlet temperature (20–32 °C), the evaporator air flow rate (250–700 m3/h) and the evaporator air humidity ratio (9 and 14.5 gwv/kga) at the condenser air temperature and volume flow rate of 35 °C and 850 m3/h, respectively on the system performance are investigated. Experimental results revealed that the evaporator air inlet temperature has pronounced effects on the air exit temperatures, pressures of the evaporator and the condenser, cooling capacity, condenser heat load, compressor pressure ratio and the COP of both refrigerants at humidity ratios of 9 and 14.5 gwv/kga. Significant effects of the evaporator air flow rate are also gathered on the preceding parameters at the same values of mentioned-humidity ratios. The best performance, in terms of operating parameters as well as COP, can be accomplished using R22 compared to R407C. The inlet humidity ratio affects dramatically the performance of vapor compression system using R22 and R407C. The raising up humidity ratio from 9 to 14.5 gwv/kga leads to an augmentation in the average cooling capacity by 29.4% and 38.5% and an enhancement in the average COP by 30% and 24.1% for R22 and R407C, respectively.  相似文献   

6.
This paper presents an experimental study of R152a and R32, environment-friendly refrigerants with zero ozone depletion potential (ODP) and low global warming potential (GWP), to replace R134a in domestic refrigerator. A refrigerator designed and developed to work with R134a was tested, and its performance using R152a and R32 was evaluated and compared with its performance when R134a was used. The results obtained showed that the design temperature and pull-down time set by International Standard Organisation (ISO) for small refrigerator were achieved earlier using refrigerant R152a and R134a than using R32. The average coefficient of performance (COP) obtained using R152a is 4.7% higher than that of R134a while average COP of R32 is 8.5% lower than that of R134a. The system consumed less energy when R152a was used. The performance of R152a in the domestic refrigerator was constantly better than those of R134a and R32 throughout all the operating conditions, which shows that R152a can be used as replacement for R134a in domestic refrigerator.  相似文献   

7.
Saturated pool film boiling over a flat horizontal surface is investigated numerically for water and refrigerant R134a at near-critical conditions for wall superheats (ΔTSup) of 2?K, 5?K, 8?K, 10?K, 15?K, and 20?K. The flow is considered to be laminar and incompressible. The governing equations are solved using a finite volume method with a collocated grid arrangement. For capturing the interface in two-phase boiling flows, a Coupled Level Set and Volume of Fluid (CLSVOF) with a multidirectional advection algorithm is used. Both single-mode and multimode boiling models are used for the numerical investigation to understand the effect of computational domain sizes on flow and heat transfer characteristics. In the case of water, the evolution of interface morphology shows the formation of a discrete periodic bubble release cycle occurring at lower Jacob numbers, Jav?≤?10.2(ΔTSup?≤?8?K), and the generation of jets of stable vapor film columns occurs at higher Jav?≥?12.7 (ΔTSup?≥?10?K). In the case of R134a, for all the Jav values considered in this study (0.163?≤?Jav?≤?1.63), the formation of a discrete periodic bubble release is observed. The results show that multimode boiling model should be used to understand the flow characteristics better. The magnitude of average Nusselt number obtained from the multimode film boiling model is lower than that of the single-mode film boiling model. The Nusselt numbers obtained from the present numerical studies are also compared with the available semiempirical correlations.  相似文献   

8.
9.
This study provides analysis of a cooled Ranque–Hilsch vortex tube (RHVT) with various specifications. It shows how cooling influences energy conversion inside the RHVT and improves performance of the device in separation of hot gas from the cold stream within the fluid by presenting the temperature detachment (the temperature diminution of cold air (ΔTc = Ti ? Tc), isentropic efficiency (ηis), and coefficient of performance (COP) of divergent, convergent, and straight VTs. Two key parameters including hot tube length and number of nozzles for cooling and insulated cases are investigated to find out how the performance of the VT is affected by different geometry configurations under cooling conditions. These influences were researched for straight, convergent, and divergent VT separators under different flow characteristics. The optimum geometrical conditions for the cooling cases were identified. Results are indicative of positive influence of cooling for energy separation inside a VT. The quantities of ΔTc, ηis, and COP for the cooled RHVT are greater than uncooled RHVT for various types of VTs. Cooling the VTs leads to an increase of 12.5% in ΔTc, 14.4% in ηis, and 15.1% in COP when the base case was an uncooled VT.  相似文献   

10.
含R227ea的混合制冷剂替代R22研究   总被引:2,自引:0,他引:2  
由于R410,R407系列混合制冷剂在替代R22方面的不足,更多新型的制冷剂列入了研究。R227ea具有良好的环境性能,最典型的特点是具有很好的阻燃性。文章对含R227ea各种混合物进行了理论计算和比较,并对其安全性进行了分析。计算结果表明,混合物R32/R134a/R227ea及R32/R125/R227ea不论是COP还是Qv值,都能和R22相匹配,而且优于R410A的最大特点是其冷凝压力大大降低,甚至低于R22,非常有利于原装置替代。  相似文献   

11.
This paper is about a comparative study of some parameters related to natural solar drying of cassava, ripe(I) or raw(II) plantain banana and mango. The comparative study was carried out by investigating the constant rate period, the falling rate period and the transition between these two periods. For the constant rate period, the product temperature Tp and the ambient temperature Ta were analysed in relation with the initial moisture content Wi. Then the maximum temperature difference DTmax between Ta and Tp was investigated, and found to decrease exponentially with Wi. In the constant rate period, parameters such as hc/λ, dm/dt and the mass transfer coefficient hm were reported and discussed. A new parameter was then introduced and termed the specific rate Rsp, which strongly correlated to Wi and DTmax. The critical point Wc was also taken into account. As for the falling rate period, the study was carried out by means of the overall resistance to diffusion Rds. The next step was the analysis of the drying rhythms. Finally, the investigation about the rewetting behaviour of the four products was made by using the desorption and sorption velocities (Vdes and Vsor), and the rewetting rate, too.  相似文献   

12.
A refrigeration test facility was constructed to examine the performance of potential alternatives to R22. For the purpose of this paper, the performance of R407c (a zeotropic mixture of R134a, R125 and R32 in a 52% 25% 23% composition by mass) was compared to that of R22. It was found that the performance of R407c approached that of R22 at higher evaporator temperatures, but reductions in evaporator capacity and COPc were found with decreasing evaporator temperature. The effects on evaporator performance of a 32 cSt polyol ester compressor lubricating oil were also noted. It was seen that while R22 and this oil responded in typical fashion for a soluble refrigerant-oil pair (reduced capacity, increased evaporator pressure drop and fall-off in capacity at low superheats), R407c displayed a two-stage performance decline occurring over a greater range of superheat. The combined effect of differential solubility of the individual components of the mixture in conjunction with a more gradual solubility effect due to the presence of a temperature glide in the evaporator lead to a minor change in composition of the circulating refrigerant mixture resulting in a drop in evaporator capacity and COPc.  相似文献   

13.
In the present paper, we report on heat transport rates and fluid flow patterns of a bubble‐driven heat‐transport device (BD‐HTD) made of glass, obtained with the working fluids water, soapsuds, ethanol, and R141b. In this type of HTD, the cooling and heating sections are connected to each other by a closed loop of tube meandering between them, and the loop is filled to a certain volume fraction with a working fluid. The present BD‐HTD was set vertically and was heated at the bottom by warm water and cooled at the top by cold water. Experimental parameters were the inner diameter of the tube (D = 1.8, 2.4, 5.0 mm), the total temperature difference of heating and cooling water (ΔT = 20 to 60 K), and liquid volume fraction (α = 18 to 98%). The main results are summarized as follows. Heat transfer coefficient of the working fluid at the heating and cooling sections, hfi, is not strongly dependent on α and ΔT. Among the present test liquids, the effective thermal conductivity kef is the highest for R141b, but the heat transfer coefficient hfi is the highest for water. As kef is sufficiently high even for water, the heat transport rate Q is the highest for water. Q of the present BD‐HTD using water can exceed the maximum heat transport rate of conventional heat pipes of the same geometry. For R141b, the BD‐HTD operated for D0 = 1.5 to 4.2 (λ0: the capillary length) and Q is not strongly dependent on the tube diameter. This result indicates that BD‐HTDs are suitable for micro‐HTDs, but the BD‐HTD did not operate with water at D0 = 0.65. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 167–177, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10082  相似文献   

14.
Heat pipes and two-phase thermosyphon systems are passive heat transfer systems that employ a two-phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as air-conditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air-to-air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22 m3/h, evaporator inlet-air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady-state operation, a mathematical model for heat-transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet-air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outlet-air temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inlet-air temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.  相似文献   

15.
An experiment is carried out here to investigate the characteristics of the evaporation heat transfer for refrigerants R-134a and R-407C flowing in horizontal small tubes having the same inside diameter of 0.83 or 2.0 mm. In the experiment for the 2.0-mm tubes, the refrigerant mass flux G is varied from 200 to 400 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, inlet vapor quality xin from 0.2 to 0.8 and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the 0.83-mm tubes, G is varied from 800 to 1500 kg/m2 s with the other parameters varied in the same ranges as those for Di = 2.0 mm. In the study the effects of the refrigerant vapor quality, mass flux, saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. The experimental data clearly show that both the R-134a and R-407C evaporation heat transfer coefficients increase almost linearly and significantly with the vapor quality of the refrigerant, except at low mass flux and high heat flux. Besides, the evaporation heat transfer coefficients also increase substantially with the rises in the imposed heat flux, refrigerant mass flux and saturation temperature. At low R-134a mass flux and high imposed heat flux the evaporation heat transfer coefficient in the smaller tubes (Di = 0.83 mm) may decline at increasing vapor quality when the quality is high, due to the partial dryout of the refrigerant flow in the smaller tubes at these conditions. We also note that under the same xin, Tsat, G, q and Di, refrigerant R-407C has a higher hr when compared with that for R-134a. Finally, an empirical correlation for the R-134a and R-407C evaporation heat transfer coefficients in the small tubes is proposed.  相似文献   

16.
We report an algorithm for real-time control of the fuel of a DMFC. The MEA voltage decay coefficients [e1, e2], and I-V-T, M′-I-T, and W′-I-T curves (where I is the current, V the voltage, T the temperature, and M′ and W′ the methanol and water consumption rates, respectively) of n fuels with specified methanol concentrations CM,k (k = 1, 2,…, n) are pre-established and form (I,V,T), (M′,I,T), and (W′,I,T) surfaces for each CM,k. The in situ measured (I,V,T)u after voltage decay correction is applied to the n preset (I,V,T) surfaces to estimate CM,u (the CM corresponding to (I,V,T)u) using an interpolation procedure. The CM,u is then applied to the n preset (M′,I,T) and (W′,I,T) surfaces to estimate cumulated “methanol” and “water” consumed quantities . Thus in a real-time system, the CM and total quantity of fuel can be controlled using the estimated CM,u and cumulated “methanol” and “water” consumed quantities.  相似文献   

17.
HCFC22替代物吸收制冷特性的实验研究   总被引:1,自引:1,他引:0  
报道了吸收制冷系统中R22/DMF、R134a/DMF和R134a+R32/DMF(R134a和R32分别以1∶1和3∶7摩尔比混合)等四种工质对的实验结果,并进行了比较和分析。结果表明,混合制冷工质对R134a+R32(3∶7)/DMF在工作压力比R22高出20%的条件下,其系统性能与工质对R22/DMF相当。  相似文献   

18.
Two phase flow characteristics such as coefficient of heat transfer and pressure drop observed during boiling of ternary azeotropic refrigerant mixtures R-404A (R-125/RR--134a/R-143a:44/4/52), R-407B (R-32/R-125/R-134a: 10/70/20), R-407C (R-32/R-125/R-134a:23/25/52) and R-408A (R-22/R-125/R-143a:46/7/47) are presented and analyzed in this paper.Experiments showed that for Reynolds numbers higher than 4.5 E04, R-408A and R-404A appear to have greater heat transfer rates than the other blends under investigation. Furthermore, it is quite evident from this data that at higher Reynolds number R-404A and R-408A have the highest pressure drop while R-407 experiences the lowest pressure drop among the refrigerants under investigation.  相似文献   

19.
Theoretical analyses of natural and conventional working fluids‐based transcritical Rankine power cycles driven by low‐temperature geothermal sources have been carried out with the methodology of pinch point analysis using computer models. The regenerator has been introduced and analyzed with a modified methodology considering the considerable variation of specific heat with temperature near the critical state. The evaluations of transcritical Rankine cycles have been performed based on equal thermodynamic mean heat rejection temperature and optimized gas heater pressures at various geothermal source temperature levels ranging from 80 to 120°C. The performances of CO2, a natural working fluid most commonly used in a transcritical power cycle, have been indicated as baselines. The results obtained show: optimum thermodynamic mean heat injection temperatures of transcritical Rankine cycles are distributed in the range of 60 to 70% of given geothermal source temperature level; optimum gas heater pressures of working fluids considered are lower than baselines; thermal efficiencies and expansion ratios (Expr) are higher than baselines while net power output, volume flow rate at turbine inlet (V1) and heat transfer capacity curves are distributed at both sides of baselines. From thermodynamic and techno‐economic point of view, R125 presents the best performances. It shows 10% higher net power output, 3% lower V1, 1.0 time higher Expr, and 22% reduction of total heat transfer areas compared with baselines given geothermal source temperature of 90°C. With the geothermal source temperature above 100°C, R32 and R143a also show better performances. R170 shows nearly the same performances with baselines except for the higher V1 value. It also shows that better temperature gliding match between fluids in the gas heater can lead to more net power output. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

This article deals with a numerical study of fluid flow and heat transfer by unsteady natural convection and thermal radiation in a vertical channel opened at both ends and filled with anisotropic, in both thermal conductivity and permeability, fluid-saturated porous medium. The bounding walls of the channel are gray and kept at a constant hot temperature.

In the present study we suppose the validity of the Darcy law for motion and of the local thermal equilibrium assumption. The radiative transfer equation (RTE) is solved by the finite-volume method (FVM). The numerical results allow us to represent the time–space variations of the different state variables. The sensitivity of the fluid flow and the heat transfer to different controlling parameters, namely, the single scattering albedo ω, the temperature ratio R, the anisotropic thermal conductivity ratio Rc, and the anisotropic permeability ratio Rk, are addressed. Numerical results indicate that the controlling parameters of the problem, namely, ω, R, Rc, and Rk, have significant effects on the flow and thermal field behavior and also on the transient process of heating or cooling of the medium. Effects of such parameters on time variations of the volumetric flow rate qv and the convected heat flux Q at the channel's outlet are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号