首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A digital-to-analog converter (DAC) has been designed which uses an algorithm based on interpolation. The algorithm ensures monotonicity and differential linearity despite offset voltages, and hence eliminates the need for trimming. The technique has been used to design a 15-bit DAC in a 2.5-μm CMOS technology. The converter features S/(N+THD) of 74 dB with a dynamic range of 87 dB and a power consumption of 22 mW at 44-kHz sample frequency  相似文献   

2.
This paper describes a multibit bandpass ΔΣ modulator (DSM) for a frequency-interleaved analog-to-digital (A/D) converter (ADC). A frequency-interleaved ADC using low oversampling ratio (OSR) DSMs is an attractive approach for broadband and high resolution A/D conversion. A multibit DSM is suitable for low-oversampling operation; however, the overall resolution of a multibit DSM is restricted by the accuracy of the internal D/A converter (DAC). Some methods have been reported for improving the internal DAC accuracy of a low-pass DSM, but no bandpass-shaping technique applicable to a bandpass DSM has been implemented, although some methods have been proposed by using simulation. This paper proposes a multibit bandpass DSM with bandpass noise-shaping dynamic element matching (BPNSDEM), which enables bandpass shaping to mismatch error of the internal DAC, and presents its implementation. The modulator was implemented in a 0.25-μm CMOS technology. It operates at a 2.5-V power supply and achieves a signal-to-noise ratio of 77.4 dB over a 250-kHz bandwidth centered at 566 kHz  相似文献   

3.
A 1.8-GHz wideband DeltaSigma fractional-N frequency synthesizer achieves the phase noise performance of an integer-N synthesizer using a spur-cancellation digital-to-analog converter (DAC). The DAC gain is adaptively calibrated with a least-mean-square (LMS) sign-sign correlation algorithm for better than 1% DAC and charge pump (CP) gain matching. The proposed synthesizer phase-locked loop (PLL) is demonstrated with a wide 400-kHz loop bandwidth while using a low 14.3-MHz reference clock, and offers a better phase noise and bandwidth tradeoff. Using an 8-bit gain-calibrated DAC, DeltaSigma-shaped divider ratio noise is suppressed by as much as 30 dB. The second-order DeltaSigma fractional-N PLL exhibits in-band and integrated phase noises of -98 dBc/Hz and 0.8deg. The chip, fabricated in 0.18-mum CMOS, occupies 2 mm2, and consumes 29 mW at 1.8-V supply. The spur cancellation and correlation function consumes 30% additional power  相似文献   

4.
A self-trimming 14-b 100-MS/s CMOS DAC   总被引:2,自引:0,他引:2  
A 14-b 100-MS/s CMOS digital-analog converter (DAC) designed for high static and dynamic linearity is presented. The DAC is based on a central core of 15 thermometer decoded MSBs, 31 thermometer decoded upper LSBs (ULSBs) and 31 binary decoded lower LSBs (LLSBs). The static linearity corresponding to the 14-b specification is obtained by means of a true background self-trimming circuit which does not use additional current sources to replace the current source being measured during self-trimming. The dynamic linearity of the DAC is enhanced by a special track/attenuate output stage at the DAC output which tracks the DAC current outputs when they have settled but attenuates them for a half-clock cycle after the switching instant. The DAC occupies 3.44 mm×3.44 mm in a 0.35-μm CMOS process, and is functional at up to 200 MS/s, with best dynamic performance obtained at 100 MS/s. At 100 MS/s, power consumption is 180 mW from a 3.3-V power supply, and 210 mW at 200 MS/s  相似文献   

5.
A four pointer data weighted averaging (FPDWA) algorithm is presented to reduce the nonlinearity of the feedback multi-bit digital-to-analog converter (DAC) for delta-sigma modulators. By utilizing the proposed algorithm, the noise power caused by element mismatch can be reduced. A nine-level second-order delta-sigma modulator has been implemented in a double-poly double-metal 0.35 m CMOS process. Experimental results indicate the peak SNDR reaches 86.59 dB within bandwidth of 22 kHz. The maximum input amplitude is –7 dB below the full scale with 10-kHz input frequency, the sampling frequency is 5 MHz, and the OSR is around 113. The power consumption is 6.27 mW for a power supply of 3.3 V.  相似文献   

6.
A multibit Δ-Σ modulator is an attractive way of realizing a high-accuracy, high-speed, and low-power data converter. However, the overall resolution of the modulator is determined by the internal digital-to-analog conversion (DAC) linearity. Methods for high-order noise shaping, noise-shaping dynamic element matching (NSDEM), have been proposed in order to overcome this drawback. However, a real implementation has not been realized until now. This paper presents the actual circuit configuration of a tree-structured NSDEM (TNSDEM) technique, which is applied to a multibit Δ-Σ DAC and analog-to-digital converter (ADC) using a nine-level internal DAC. This is the first report of a Δ-Σ ADC and DAC using the second-order NSDEM method. The test chip of the third-order Δ-Σ ADC realizes a signal bandwidth of 100 kHz and a dynamic range of 79 dB in the ADC and 80 dB in the DAC. The test chip only consumes 9.6 mW in the ADC and 5.2 mW in the DAC with a 2.7 V power supply  相似文献   

7.
Delta-sigma (ΔΣ) analog-to-digital converters (ADC's) rely on oversampling to achieve high-resolution. By applying multibit quantization to overcome stability limitations, a circuit topology with greatly reduced oversampling requirements is developed. A 14-bit 500-kHz ΔΣ ADC is described that uses an oversampling ratio of only 16. A fourth-order embedded modulator, four-bit quantizer, and self-calibrated digital-to-analog converter (DAC) are used to achieve this performance. Although the high-order embedded architecture was previously thought to be unstable, it is shown that with proper design, a robust system can be obtained. Circuit design and implementation in a 1.2-μm CMOS process are presented. Experimental results give a dynamic range of 84 dB with a sampling rate of 8 MHz and oversampling ratio of 16. This is the lowest oversampling ratio for this resolution and bandwidth achieved to date  相似文献   

8.
设计了一个14位刷新频率达400MHz,用于高速频率合成器的低功耗嵌入式数模转换器。该数模转换器采用5+4+5分段式编码结构,其电流源控制开关输出驱动级采用归零编码以提高DAC动态特性。该数模转换器核采用0.18μm1P6M混合信号CMOS工艺实现,整个模块面积仅为1.1mm×0.87mm。测试结果表明,该DAC模块的微分非线性误差是-0.9~+0.5LSB,积分非线性误差是-1.4~+1.3LSB,在400MHz工作频率下,输出信号频率为80MHz时的无杂散动态范围为76.47dB,并且功耗仅为107.2mW。  相似文献   

9.
A CMOS central office codec that supports Full Rate and G.Lite asymmetric digital subscriber line (ADSL) transmission is described. The transmit channel consists of application-dependent digital filters, a 14-bit, 8.832-MSample/s current steering DAC, a 1.104-MHz analog filter, and a programmable attenuator. Due to extensive on-chip digital signal processing, the codec complies with the ADSL transmit power spectral density standards without external filtering. The receive channel contains -17.5 to 33.5 dB of programmable gain staggered strategically across three stages, a 138-kHz analog low-pass filter, a 14-bit, 2.208-MSample/s pipeline ADC, and a digital 138-kHz low-pass filter. The receive channel has a wide input range that can accommodate large line voltages present at the line hybrid circuit. The IC occupies 55.2 mm2 and dissipates 450 mW from a 3.3-V supply  相似文献   

10.
A new segmented architecture is presented to improve the dynamic and static performance of the current steering digital-to-analog converters (DACs). In the proposed architecture instead of a single binary DAC, distributed binary cells are used. So the effect of the mismatch and timing errors of the binary cells are not accumulated and are averaged out. For realization of the MSB unit cells those binary cells are reused to form the larger weighted unit cells. Realization of the MSB unit cells with smaller cells results in improved dynamic performances as the effects of gradient errors are minimized and the effects of nonlinear parasitic capacitances are reduced. The DAC has been designed in 180 nm five-metal nwell CMOS process. The simulation results show that the DAC can achieve a maximum spurious free dynamic range (SFDR) of 70.99 dB at 2.93 MHz signal for a sampling rate of 1 GSPS considering the mismatch effects. For 1 GSPS sampling rate the simulated Nyquist SFDR is >70 dB with mismatch. The simulated third order intermodulation distortion (IM3) of the DAC with mismatch effect is 71.40 dB, for a dual tone test with 491.21 and 495.12 MHz signals. The DAC is optimized for digital signal synthesis applications in wireless base stations and other communication applications. The power dissipation of the DAC is 78.21 mW at 498.05 MHz signal for a sampling rate of 1 GSPS with 1.8 V supply.  相似文献   

11.
A 14-b, 100-MS/s CMOS DAC designed for spectral performance   总被引:2,自引:0,他引:2  
A 14-bit, 100-MS/s CMOS digital-to-analog converter (DAC) designed for spectral performance corresponding more closely to the 14-bit specification than current implementations is presented. This DAC utilizes a nonlinearity-reducing output stage to achieve low output harmonic distortion. The output stage implements a return-to-zero (RZ) action, which tracks the DAC once it has settled and then returns to zero. This RZ circuit is designed so that the resulting RZ waveform exhibits high dynamic linearity. It also avoids the use of a hold capacitor and output buffer as in conventional track/hold circuits. At 60 MS/s, DAC spurious-free dynamic range is 80 dB for 5.1-MHz input signals and is down only to 75 dB for 25.5-MHz input signals. The chip is implemented in a 0.8-μm CMOS process, occupies 3.69×3.91 mm 2 of die area, and consumes 750 mW at 5-V power supply and 100-MS/s clock speed  相似文献   

12.
针对GSM标准无线发射系统中数模转换器(DAC)的要求,分析了影响其性能和功耗的限制因素,并在SMIC 0·13μm CMOS工艺1.2 V电源电压下设计了一款10位电流驱动型数模转换器(Current-steering DAC).使用最佳拟合线的算法衡量电流源匹配的随机误差对DAC静态非线性的影响,使得DAC的电流源...  相似文献   

13.
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 μm CMOS technology, requiring an active area of just 200 μm × 200 μm. Experimental results, with a full-scale output current of 700 μA and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.  相似文献   

14.
A 2.5-V CMOS direct digital frequency synthesizer (DDFS) with 12 bits of phase resolution and 11 bits of amplitude resolution is presented. Low power consumption is achieved using a nonlinear digital-to-analog converter (DAC). To further reduce power and area, a new technique is proposed to segment the non-linear DAC into a coarse nonlinear DAC and a number of fine nonlinear sub-DACs. The DDFS fabricated in a 0.25-/spl mu/m CMOS process occupies an active area of 1.4 mm/sup 2/. For a clock frequency of 300 MHz, it consumes 240 mW and the spurious-free dynamic range is less than 51 dB for output frequencies up to 3/8 of the clock frequency.  相似文献   

15.
A design technique that uses nonlinear digital-to-analog converter (DAC) for implementing low-power direct digital frequency synthesizer (DDFS) is proposed. The nonlinear DAC is used in place of the ROM look up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS. Since the proposed design technique for DDFS does not require a ROM, significant saving in power dissipation results. The design procedure for implementing the nonlinear DAC is presented. To demonstrate the proposed technique, two quadrature DDFSs, one using nonlinear resistor string DACs and the other using nonlinear current-mode DACs, were implemented. For a 3.3-V supply, the resulting power dissipation for both DDFSs are 4 and 92 mW at a clock rate of 25 MHz and 230 MHz, respectively. For both DDFSs, the spurious free dynamic ranges are over 55 dB for low synthesized frequencies  相似文献   

16.
An oversampled digital-to-analog converter (DAC) is presented. The performance of this device has been achieved with a careful tradeoff with power consumption. A digital ΣΔ modulator has been optimized for the 96-dB target. In the switched-capacitor reconstruction filter (SCF), the input structure is embedded in the feedback loop in order to reduce the output noise. The order of the SCF is three, larger than in competitive solutions, allowing to achieve a lower out-of-band noise. Finally, the differential-to-single-ended converter does not strongly limit the overall DAC channel performance. The device has been realized in a standard 3.3-V CMOS technology. With a 28-mW-per-channel power consumption the dynamic range is 98 dB, while the SNDR peak is 86 dB  相似文献   

17.
This work describes a 10 b 70 MHz CMOS digital-to-analogue converter (DAC) for video applications. The proposed DAC is composed of a unit decoded matrix for 7 MSBs and a binary weighted array for 3 LSBs, considering linearity, power consumption, routing area and glitch energy. A new switching scheme for the unit decoded matrix is developed to further improve the linearity. Cascode current sources and differential switches with a new deglitching circuit improve the dynamic performance  相似文献   

18.
A 10-bit 200-MHz CMOS video DAC for HDTV applications   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MHz CMOS current steering digital-to-analog converter (DAC) for HDTV applications. The proposed 10-bit DAC is composed of a unit decoded matrix for 6 MSBs and a binary weighted array for 4 LSB’s, considering linearity, power consumption, routing area, and glitch energy. A new switching scheme for the unit decoded matrix is developed to improve linearity further. Cascade current sources and differential switches with deglitch latch improve dynamic performance. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.3 LSB and 0.2 LSB, respectively. The converter achieves a spurious-free dynamic range (SFDR) of above 55 dB over a100-MHz bandwidth and low glitch energy of 1.5 pVs. The circuit is fabricated in a 0.25 μm CMOS process and occupies 0.91 mm2. When operating at 200 M Sample/s, it dissipates 82 mW from a 3.3 V power supply.  相似文献   

19.
An 18th-order all-pole continuous-time bandpass filter for IF (intermediate frequency) filtering purposes has been designed and integrated in a 3-μm CMOS process. Implemented using nine fully balanced, transconductor-capacitor coupled resonators, the filter features a 20-kHz bandwidth at 200-kHz center frequency and 54-dB dynamic range (IM3<-40 dB) and consumes 300 μA from a single 4-V supply. With the use of conventional phase-locked loop techniques for automatic tuning, the accuracy of the filter response is comparable to that of ceramic filters. As expected, the fundamental limitations of such an active implementation compared to a passive realization are noise and distortion  相似文献   

20.
In this paper a new successive approximation (SA) quantizer based on the elimination of the digital to analog converter (DAC) from the quantizer structure is presented. Instead; the feedback DAC block of the ΣΔ modulator is shared by SA quantizer. Using an efficient decoding algorithm in the proposed structure in conjunction with the above SA quantizer DAC elimination method, results in a reduction of the level number of the feedback DAC, and hence, a significant drop in power and area consumption is achieved. In order to study the performance of the proposed structure, a third order discrete-time ΣΔ modulator is designed and simulated in 0.18 μm CMOS technology with the following performance characteristics; a signal to noise ratio of 79.2 dB, dynamic range of 84.8 dB, power consumption of 3.75 mW and a figure of merit of 0.66 pJ/conv from a 1.8 V supply with an input signal of 200 kHz bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号