首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ren  Ya-fei  Zhao  Jun  Xie  Hua-sheng  Liu  Shi-bing  Lou  Yan-chun  Yan  Ping 《中国铸造》2017,14(1):55-58
Thermo hydrogen treatment(THT) of titanium is a process in which hydrogen is used as a temporary alloying element in titanium alloys. It is an attractive approach for controlling the microstructure and thereby improving the final mechanical properties. In the present study, the microstructure of the original(non-hydrogenated) sample has only α phase and the grains is coarse with an average size of ~ 650 μm. While the grain size of thermo hydrogen treated Ti-5Al-2.5Sn ELI alloy became finer and the mechanical properties were improved significantly. When the hydrogen content of the hydrogenated Ti-5Al-2.5Sn ELI alloy is 0.321 wt.%, β phase and δ titanium hydride appear. Also the average grain size decreases to 450 μm. When the hydrogen content is 0.515 wt.%, the grain size decreases to 220 μm. The mechanical properties were tested after dehydrogenation, and the mechanical properties improved significantly compared to the unhydrogenated specimens. The tensile strength of the Ti-5Al-2.5Sn ELI alloy improved by 17.7% when the hydrogen content increased to 0.920 wt.%, at the same time the percentage reduction of area(Z) increased by 33% and the impact toughness increased by 37%.  相似文献   

2.
Ti—55M高温Ti合金焊缝塑性的改善   总被引:4,自引:0,他引:4  
考察了Ti-55M高温Ti合金焊接接头力学性能,结果显示焊缝在明显的室脆性,探讨了Ti-55M焊缝室温塑性的各种影响因素,尝试使用调整焊缝化学成分的方法改善Ti-55M焊缝的塑性,选择ELI级Ti-5Al-2.5Sn焊丝、配合脉冲氩弧焊工艺和适当的焊后热处理制度、获得的焊缝塑性接近母材的塑性,接头的室温和高温强度以及高温持久等重要性能能够满足母材技术指标要求。  相似文献   

3.
采用万能力学试验机及霍普金森压杆试验研究了固溶和时效处理对Ti-6Al-4V ELI钛合金准静态拉伸性能和动态压缩性能的影响。结果表明,Ti-6Al-4V ELI钛合金经固溶时效处理后(固溶温度941 ℃),其屈服强度可达1097 MPa以上,抗拉强度可达1167 MPa以上。相比热处理前的Ti-6Al-4V ELI钛合金,强度显著提升,而且塑性指标也维持在较高水平。同时,不同应变速率下Ti-6Al-4V ELI钛合金的动态压缩性能提升明显,动态压缩强度和应变速率的对数呈线性关系,且随着应变速率的增加而增大。  相似文献   

4.
The influence of titanium alloy (Ti-5Al-2.5Sn) and commercially pure titanium (cpTi) as fillers on dissimilar pulsed tungsten inert gas weldments of Ti-5Al-2.5Sn/cpTi was investigated in terms of microstructure,mechanical/nano-mechanical proper-ties,and residual stresses.A partial martensitic transformation was observed in the weldments for all the welding conditions due to high heat input.The microstructure evolved in the FZ/cpTi interfacial region was observed to be the most sensitive to the proportion of α stabilizer in the filler alloy.Furthermore,the addition of filler alloy improved the tensile properties and nano-mechanical response of the weld joint owing to the increased volume of metal in the weld joint.As compared to the Ti-5Al-2.5Sn wire,the use of cpTi filler wire proved to be better in terms of energy absorbed during tensile and impact tests,tensile strength and ductility of the dissimilar welds.An asymmetrical residual stresses profile was observed close to the weld centerline,with high compressive stresses on the Ti-5Al-2.5Sn side for both the weldments obtained with and without filler wires.This was attributed to mainly the low thermal conductivity of Ti-5Al-2.5Sn.The presence of residual stresses also influenced the nano-hardness profile across the weldments.  相似文献   

5.
1.IntroductionContinuousfiberreinforcedtitaniummatrixcompositeshavepotentialapplicationatelevatedtemperature.Anewmethodhajsbeentriedbyoneofthepresentautho.s[1'21toalleviatethedeleteriousinterfacereactionbetweenthefiberandthematrix,whichislikelytooccurinthiscompositeduringfabrication.Previous.orb[llshowedthattitaniummatrixcompositecanachievefullconsolidationatrelativelylowtemperaturewiththeaidofhydrogenasatemporaryalloyingelement.Furtherstudyalongthisdirectionshouldbebasedonacomprehensiveunders…  相似文献   

6.
1.IntroductionTiAl-basedalloysareanewtypeofstructuralmaterialforuseathightempera-ture,whichhaspr0misingaer0spaceapplicati0n.However,thepracticalapplicationofthismateria1ishinderedduetoitsp0orh0tdef0rmability[1,2]andbrittlenessatambienttemperature[3].Owingt0itspoorhotplasticity,whenaningotisis0thermallyf0rgedandpressedtoobtainplasticdef0rmation,alargenumber0fdeepcrackswillappear0nitssurface.More-over,highstressduringh0tdef0rmati0nandlargefrictionbetweenthespecimenandthepunchleadt0theheter0geni…  相似文献   

7.
对Ti-6Al-2Zr-1Mo-1V合金进行等温恒应变速率压缩试验,利用压缩试验数据对比Prasad失稳准则和唯象型失稳准则,发现2种准则均预测出合金在应变速率为0.32~10 s-1范围内的塑性流动失稳现象,该失稳区随变形温度的降低具有逐渐向低应变速率范围扩展的趋势。经微观组织观察发现,Prasad准则不能预测到合金在750~800 ℃,0.001~0.0032 s-1范围发生的局部流动和弯折失稳,而唯象型准则对合金在770~870 ℃、0.01~0.32 s-1和900~950 ℃、0.32~3.16 s-1区域出现的晶界裂纹、孔洞以及局部流动不能进行准确预测。结合2种准则的优缺点,提出预测合金塑性流动失稳的新方法。  相似文献   

8.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

9.
以TC4合金等温锻造为例,提出一种基于多塑性变形机制耦合的数值模拟方法。通过对等温锻造过程中塑性变形机制的研究和对应变速率敏感指数以及TC4合金动态再结晶的分析,建立材料常规塑性变形、超塑性变形和蠕变变形的判据。并依据多塑性变形机制判据来确定坯料内部各单元的实时塑性变形机制,同时采用相应的本构方程,使模拟结果更符合实际情况,从而能真实反映航空难变形材料的等温锻造工艺过程:普通塑性变形、超塑性变形和等温保压充填模具过程等。模拟结果表明,变形材料并非处于单一塑性变形机制,而是多种变形机制相互协调,并且随着变形的进行,材料各单元的变形机制也随之改变。等温锻造过程中,上述机制的改变与材料的动态再结晶密切相关  相似文献   

10.
The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP)of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.  相似文献   

11.
In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured.The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.  相似文献   

12.
In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al- 3Sn alloy were studied.  相似文献   

13.
Research on elevated temperature deformation behavior of Ti-6Al-4V sheets   总被引:1,自引:0,他引:1  
Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of de-formation temperature and strain rate on flow stress was evaluated, and deformation mechanism was analyzed. The results show that the stress-strain curves of Ti-6Al-4V (TC4) alloy sheet and TC4 alloy bar at elevated temperatures have different forms and rules. Flow stress of TCA is controlled by both strain rate and deformation temperature. The flow stress decreases with the increase of high temperature. Deforma-tion mechanisms exhibit dynamic recovery and recrystallization feature within high temperature region and grain boundary slip behaviors at low temperature.  相似文献   

14.
The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP) of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°,were conducted at a deformation temperature of 750°C,a ram speed of 0.3 mm·s-1,an outer arc of curvature of 60° and a channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.  相似文献   

15.
Our previous results have shown that comprehensive mechanical properties of titanium alloys can be effectively improved by addition of Fe[1]. We systematically investigate hot deformation behaviors of Ti-6Al-4V-0.35Fe in this study, which is significant to improve plastic deformation ability of titanium alloys. In experiment, we use a Gleeble 3800 thermo-mechanical simulator to obtain the relationship between thermomechanical parameters and flow stress in a range of temperatures (800-950 °C) and strain rates (0.001-10 s-1). The single-peak profiles of the flow curves indicate that dynamic recrystallization (DRX) mechanism dominates the deformation. TEM analysis indicate that the grain size in DRX changes under different deformation temperatures, and finer grains are formed at relatively lower temperature due to the dynamic globularization. The dislocation walls are formed in subgrain boundaries due to dislocation slipping-climbing. The Avrami-type DRX model and the strain compensated multivariable regression model have been applied to fit the experimental stress-strain data during hot deformation. A comparative study between these two types of constitutive models is conducted to represent the flow behavior. It is found that both models have good accuracy in predicting the flow stress of Ti-6Al-4V-0.35Fe alloy. A processing map based on dynamic material model (DMM) at the strain of 0.8 (steady-state flow stage) has been established to identify the flow instability regions and stability regions. The strain rate range of stability region is 0.001-0.6s-1 which has been expanded compared to the range of 0.0003-0.1s-1 of Ti-6Al-4V. Optimal hot working parameters are confirmed to be 920-950 °C and 0.001-0.005 s-1, and nearly complete DRX has taken place. Our results indicate that hot working property of Fe-microalloyed Ti-6Al-4V is better than that of Ti-6Al-4V alloy in 800-950 °C temperature scale, and processing cost has been decreased.  相似文献   

16.
钛合金应力腐蚀开裂机理的研究   总被引:1,自引:0,他引:1  
用微电极法和 pH 试纸法直接测定了 Ti-5 Al-2.5Sn 和 Ti-5 Al-4V 在近中性3.5%wt.NaCl 水溶液中应力腐蚀裂纹顶端溶液的 pH 值,结果在1.7到2.0范围内。模拟实验的结果与上述结果一致。金相跟踪观察证明上述钛合金应力腐蚀裂纹的扩展过程是首先在裂纹前端的塑性区中形成若干小裂纹,然后主裂纹与小裂纹相对扩展并最后连通。用扫描电镜检查了应力腐蚀开裂(SCC)断口形貌。基于这些结果,作者提出并讨论了钛合金 SCC 的模型。  相似文献   

17.
The microstructure and mechanical properties of the Ti-43.7Al-3.2(Nb,Cr,Mo)-0.2B alloy in the as-cast state (after gasostatistic processing) and of the Ti-45Al-8Nb-0.2C alloy after hot extrusion at temperatures corresponding to the ?? + ?? phase field followed by heat treatment have been studied. The extruded heavy-alloyed alloy has demonstrated significantly higher plastic/mechanical properties at room temperature with close values of the plasticity/tensile strength and long-term strength at elevated temperatures. A comparison of the results with literature data has shown the properties of the as-cast Ti-43.7Al-3.2(Nb,Cr,Mo)-0.2B to be similar to or superior to those of the best-known casting ?? (TiAl) + ??2 (Ti3Al) alloys.  相似文献   

18.
采用Gleeble-3800型热模拟实验机对一种新型高温钛合金Ti-6Al-2Sn-4Zr合金的高温塑性变形进行了研究,并利用数码显微镜对金相组织进行了观察.通过研究得到变形条件(变形温度、变形速率)对其成形的力学性能和组织的影响规律.结果表明:在相变温度以下变形时,流变应力先快速升高然后逐渐平缓下降,而后趋于稳定状态...  相似文献   

19.
置氢Ti-6Al-4V钛合金的热压缩变形行为研究   总被引:1,自引:0,他引:1  
通过热模拟压缩实验,研究了氢对Ti-6Al-4V钛合金热变形行为的影响。结果表明,置氢可以显著降低Ti-6Al-4V钛合金高温压缩时的流动应力,提高Ti-6Al-4V钛合金的热加工变形速率一个数量级以上,并且明显降低了Ti-6Al-4V钛合金的变形温度。在变形温度760℃~800℃范围内,置氢量为0.4wt%的Ti-6Al-4V钛合金的流动应力最小;在变形温度840℃~920℃范围内,置氢量0.2wt%的Ti-6Al-4V钛合金的流动应力最小。同时,置氢前后Ti-6Al-4V钛合金的变形激活能计算结果表明,置氢量为0.4wt%的Ti-6Al-4V钛合金在α+β两相区的变形激活能为208.3kJ/mol,与未置氢Ti-6Al-4V钛合金相比降低了316kJ/mol。  相似文献   

20.
由晓晓  常玲  吕俊霞 《表面技术》2019,48(5):97-101
目的研究β晶界对激光直接熔化沉积(LDMD)Ti-6Al-4V合金裂纹形核或传播行为的影响,以澄清合金的断裂机制,为合金性能的改善提供理论依据。方法采用LDMD Ti-6Al-4V合金粉末,在Ti-6Al-4V基板上逐层堆积形成沉积层。沿沉积层扫描方向截取试样,在室温下观察样品的微观组织形貌,并对原位拉伸过程中的微观组织演化进行实时研究。同时研究β晶界对微裂纹萌生、扩展和断裂的影响行为,总结断裂机理。结果 LDMD Ti-6Al-4V合金组织宏观呈现出沿构造方向生长的粗大柱状β晶,β晶内由板条状α晶和整齐排列的具有相同生长取向的α簇组织组成,并有少量孔洞缺陷。采用原位扫描电镜拉伸样品时发现,在横向拉力作用下,样品最初在孔洞周围发生变形,之后裂纹的萌生扩展主要沿β晶界进行,β晶界对拉力起阻碍作用,造成样品的伸长率较低。拉伸过程中,微观组织主要沿着β晶界周围的α相变形,并且孔洞缺陷引起的应力集中使得缺陷周围变形最严重,变形方向与拉力方向呈45°。结论孔洞缺陷决定了样品的初始变形位置,而β晶界则决定了裂纹传播的方向,且由于拉伸试样的截取方向与β晶界相垂直,导致样品的伸长率较低,所以β晶界对样品的力学性能及断裂机理起决定作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号