首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Denitrification for the treatment of nitrates in wastewater typically relies on organic electron donating substrates. However, for groundwater treatment, inorganic compounds such as elemental sulfur (S0) are being considered as alternative electron donors in order to overcome concerns that residual organics can cause biofouling. In this study, a packed-bed bioreactor supplied with S0:limestone granules (1:1, v/v) was started up utilizing a chemolithotrophic denitrifying enrichment culture in the form of biofilm granules that was pre-cultivated on thiosulfate. The granular enrichment culture enabled a rapid start-up of the bioreactor. A nearly complete removal of nitrate (7.3 mM) was NO3- attained by the bioreactor at nitrate loading rates of up to 21.6 mmol/(L(reactor)d). With lower influent concentrations (1.3 mM nitrate) comparable to those found in contaminated groundwater, high nitrate loads of 18.1 mmol/(L(reactor)d) were achieved with an average nitrate removal efficiency of 95.9%. The recovery of nitrogen as benign N2 gas was nearly stoichiometric. The concentration of undesirable products from S0-based denitrification such as nitrite and sulfide were low. Comparison of bioreactor results with batch kinetic studies revealed that denitrification rates were dependent on the surface area of the added S0. The surface area normalized denitrification rate was determined to be 26.4 mmol /(m2 S0 d).  相似文献   

2.
进水N/S值对同步脱硫反硝化特性的影响   总被引:2,自引:2,他引:0  
研究了不同进水N/S值条件下,不同接种物的厌氧体系的同步脱硫反硝化特性。结果表明:在N/S为0.6或0.4的条件下,3个体系对硫化物的去除率均达到90%以上,其中以进水N/S为0.4时产生的悬浮态硫最多;硝态氮的去除特性与硫化物不同,3个体系对硝态氮的去除率均在进水N/S为1.0时达到100%,且此时N2的产量也最大。可见,尽管同步脱硫反硝化工艺具备同时脱氮及除硫的能力,但其进水N/S的控制值却不相同。对于脱硫而言,最佳的进水N/S为0.4;对于脱氮而言,最佳的进水N/S为1.0。此外,研究发现3个不同接种物的厌氧体系对硫化物及硝态氮的去除途径不同,进水N/S值的影响也有差异。对于接种了厌氧污泥的体系,存在自养反硝化和异养反硝化的竞争,改变进水N/S值可调节二者的竞争,高N/S值会抑制硫化物自养反硝化过程,降低对硫化物的去除率;对于接种脱氮硫杆菌的纯菌体系,多硫自催化反应会与硫化物自养反硝化反应竞争硫化物,降低对硝态氮的去除率,高N/S值会导致出水硝态氮浓度较高;对于添加脱氮硫杆菌的强化厌氧污泥体系,以硫化物自养反硝化过程为主,最佳的N/S为0.4。  相似文献   

3.
通过比较含氨氮和不含氨氮两种进水水质条件下接种物不同的两个反应器的脱氮除硫特性,研究进水氨氮对厌氧同步脱氮除硫性能的影响。结果表明,进水未加氨氮的反应器对硫化物和硝态氮的去除率均高达95%,当加入氨氮后,仅有40%~50%的硝态氮被去除,消耗1 g硫化物所还原的硝态氮量减少,去除硝态氮的能力降低了近50%,然而对硫化物的去除率仍维持在90%左右,表明脱氮过程比脱硫过程受进水氨氮的影响大。扫描电镜观察结果证实,当进水中存在氨氮时硫化物的毒性增大,杀死了大量的脱氮硫杆菌,降低了硫化物转化为单质硫的能力,干扰了系统的反硝化脱氮过程,这是导致体系脱氮能力降低的主要原因。  相似文献   

4.
《Water research》1996,30(2):277-284
Two bench-scale sequencing batch reactors were fed with domestic wastewater and operated in an anaerobic-aerobic sequence for 139 d. Denitrification during the aerated react period was observed and the factors influencing the extent of simultaneous nitrification and denitrification were examined. It was found that the influence of DO on the nitrification rate during the aerated react period could be described by a Monod kinetic with a high oxygen half-saturation coefficient for autotrophic nitrifiers (KO.A) of 4.5 mg/l. The dependency of the denitrification rate on DO could be described by a mathematical switching function with a higher switching function constant than expected, meaning that the extent of aerobic denitrification was higher than usual. It was also observed that aerobic denitrification decreased with time over the aerated react period. For most of the time of reactor operation nitrite was the main NOx species in the effluent, instead of the commonly expected nitrate. This led to the conclusion that the activity of Nitrobacter species was probably inhibited in the SBRs studied. It also demonstrated the importance of measuring nitrite in the effluent to ensure that the reactor performance and the extent of aerobic denitrification was not over-estimated.  相似文献   

5.
This paper reports on a lab-scale evaluation of a novel and integrated biological nitrogen removal process: the sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process that was recently proposed for saline sewage treatment. The process consisted of an up-flow anaerobic sludge bed (UASB) for sulfate reduction, an anoxic filter for autotrophic denitrification and an aerobic filter for nitrification. The experiments were conducted to evaluate the performance of the lab-scale SANI system with synthetic saline wastewater at various hydraulic retention times, nitrate concentrations, dissolved oxygen levels and recirculation ratios for over 500 days. The system successfully demonstrated 95% chemical oxygen demand (COD) and 74% nitrogen removal efficiency without excess sludge withdrawal throughout the 500 days of operation. The organic removal efficiency was dependent on the hydraulic retention time, up-flow velocity, and mixing conditions in the UASB. Maintaining a sufficient mixing condition in the UASB is important for achieving effective sulfate reduction. For a typical Hong Kong wastewater composition 80% of COD can be removed through sulfate reduction. A minimum sulfide sulfur to nitrate nitrogen ratio of 1.6 in the influent of the anoxic filter is necessary for achieving over 90% nitrate removal through autotrophic denitrifiers which forms the major contribution to the total nitrogen removal in the SANI system. Sulfur balance analyses confirmed that accumulation of elementary sulfur and loss of hydrogen sulfide in the system were negligible.  相似文献   

6.
《Water research》1996,30(1):51-56
This paper reports denitrification studies performed using the anoxic reactor of a laboratory scale anoxic-aerobic plant as a batch reactor of variable volume. This was achieved by adding to the anoxic reactor a supplementary flow of nitrate after the shut down of the recirculation line and the interruption of the hydraulic connection to the aerobic reactor. By operating in this way, in a relatively short time, it is possible to get a number of experimental data sufficient to describe the biological process kinetics. The system is extremely flexible and gives kinetic data in short times for different experimental conditions. In fact, it is possible to operate at different COD/NO3-N ratios simply by changing the influent wastewater flowrate to the anoxic reactor. Two series of tests were performed: in the first series (use of endogenous carbon) a supplementary flow of nitrate was fed to the anoxic reactor while the wastewater influent flow was interrupted; in the second series (use of internal carbon) the influent wastewater flow was fed during the addition of nitrate. The importance of the carbonaceous substrate nature on the denitrification rate was also verified. Data analysis was performed by utilizing the integral method procedure and a zero order kinetics referring to both the substrates COD and nitrate nitrogen was considered. A satisfactory agreement between predicted and experimental data was found. Values obtained for kD range from 0.07 mg NO3-N/mg VSS·d, at which the carbon source is mostly endogenous, to 0.25 mg NO3-N/mg VSS·d, at which the carbon source consists mainly of readily biodegradable COD. Intermediate values occur when the readily biodegradable COD is limiting and denitrification takes place by utilizing the slowly biodegradable one.  相似文献   

7.
污水处理厂自养菌生长动力学参数的测定研究   总被引:4,自引:0,他引:4  
自养菌生长动力学参数(μA)是污水处理系统模拟和设计的关键参数,该值对污水特性非常敏感,需要准确测定.通过连续监测恒温间歇反应器中硝态氮浓度的变化,并结合非线性最小二乘法进行拟合,给出了μA的测定方法.在不同污泥浓度下多次试验的测定结果表明,该方法具有较好的重现性,试验测定μA的最佳VSS为100~200 mg/L.对上海市曲阳水质净化厂的测定结果表明,20℃时好氧池中自养菌的μA为(0.79±0.06)d-1;温度对μA的影响显著,其Arrhe-nius温度系数约为1.11.  相似文献   

8.
Recently we developed a process for wastewater treatment in places where part of the fresh water usage is replaced by seawater usage. The treatment of this saline sewage consists of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process. The process consists of an up-flow anaerobic sludge bed (UASB) for sulfate reduction, an anoxic filter for autotrophic denitrification using dissolved sulfide produced in the UASB and an aerobic filter for nitrification. The system was operated for 500 days with 97% COD removal and 74% total nitrogen removal without withdrawal of sludge. To verify these results and to understand this novel process, a steady-state model was developed from the COD, nitrogen and sulfur mass and charge balances based on the stoichiometries of the sulfate reduction, the autotrophic denitrification and the autotrophic nitrification. The model predictions agreed well with measured data on COD, nitrate and sulfate removal, sulfide production, effluent TSS, and mass balances of COD, sulfur and nitrogen in the three reactors. The model explains why withdrawal of sludge from the SANI system is not needed through comparisons of the predictions and measurements of effluent TSS and phosphorus concentrations.  相似文献   

9.
A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.  相似文献   

10.
In an effort to treat N-rich streams in a more sustainable way, recent years have seen the development of new technologies, most of which are based on autotrophic denitrification via nitrite (anammox). In order to attain a suitable influent for that process, the wastewater must be treated by partially oxidising the ammonium to nitrite. In that aspect, this article presents the start-up and operation of a Partial Nitritation Sequencing Batch Reactor (PN-SBR) treating urban landfill leachates. Stable partial nitritation has been reached treating high ammonium loads (1-1.5 kg Nm(-3)d(-1)), demonstrating the feasibility of this technology as a previous step of anammox process. This study has also given away the importance of pH influence over ammonium oxidising bacteria (AOB) activity, thus it has been possible to determine the values of the half inhibition constants for free ammonia (k(I,FA)=605.48+/-87.18 mg N-NH L(-1)) and free nitrous acid (k(I,FNA)=0.49+/-0.09 mg N-HNO2 L(-1)), as well as the half-saturation constant for bicarbonate (k(HCO3-) = 0.01 +/- 0.16 mg CL(-1)).  相似文献   

11.
Wang H  Qu J 《Water research》2003,37(15):3767-3775
A combined bioelectrochemical and sulfur autotrophic denitrification process for drinking water treatment was put forward and investigated extensively in this paper. In this new process, the bioelectrochemical denitrification was carried out in the upper part of the reactor while sulfur denitrification in the lower part. The H+ produced in Sulfur Part could be consumed by hydrogen denitrification in Bioelectrochemical Part. Therefore, the limestone for pH adjustment in Sulfur Part was not necessary in this combined process, which avoided the problem of hardness increase. The sulfate accumulation in this combined reactor was less than that of the sulfur limestone autotrophic denitrification system. The effluent from two parts was kept neutral at optimum operation conditions. When the influent nitrate was 30 mg-N/L, the reactor could be operated efficiently at the hydraulic retention time ranged from 1.9 to 5h (corresponding minimum current was 16-3 mA), i.e. the effluent NO3(-)-N removal ranged from 90% to 100% without nitrite accumulation and the effluent sulfate concentration was lower than 170 mg/L. The maximum volume-loading rate of the reactor was 0.381 kg NO3(-)-N/(m3d). The biomass and scanning electron microscope micrographs of Sulfur Part were also analyzed.  相似文献   

12.
Denitrification with methanol: microbiology and biochemistry   总被引:1,自引:0,他引:1  
Although methanol is frequently chosen as carbon and energy source for denitrification of nitrate polluted effluents, all kinetic parameters thus far reported have been for an unidentified biomass in the belief that a more specialized knowledge of the bacterial species present in the reactors has not been necessary. However, it has now been adequately demonstrated that denitrification with methanol results in a selective enrichment for bacteria belonging to the genus Hyphomicrobium. Based on current available biochemical knowledge of nitrate reduction and assimilation, methanol oxidation and assimilation and the energy yield and requirements for these reactions, it is theoretically possible to develop an equation which describes the stoichiometry of denitrification with methanol.  相似文献   

13.
Denitrification of groundwater with elemental sulfur   总被引:5,自引:0,他引:5  
Soares MI 《Water research》2002,36(5):1392-1395
Autotrophic denitrification was studied in laboratory columns packed with granular elemental sulfur only and operated in an upflow mode. Soluble inorganic carbon, sodium bicarbonate, was supplied as source of carbon for microbial growth. Denitrification rates of up to 0.20 kg N removed m(-3) d(-1) were obtained at a hydraulic retention time of I h, and a nitrate loading of 0.24 kg N m(-3) d(-1). The process is extremely simple, stable and easy to maintain.  相似文献   

14.
This paper reports about the successful laboratory testing of a new nitrogen removal process called DEAMOX (DEnitrifying AMmonium OXidation) for treatment of typical strong nitrogenous wastewater such as baker's yeast effluent. The concept of this process combines the recently discovered anammox (anaerobic ammonium oxidation) reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. To generate sulphide and ammonia, a Upflow Anaerobic Sludge Bed (UASB) reactor was used as a pre-treatment step. The UASB effluent was split and partially fed to a nitrifying reactor (to generate nitrate) and the remaining part was directly fed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance and volumetric nitrogen loading rates of the DEAMOX reactor well above 1000 mgN/l/d with total nitrogen removal efficiencies of around 90% were obtained after long-term (410 days) optimisation of the process. Important prerequisites for this performance are appropriate influent ratios of the key species fed to the DEAMOX reactor, namely influent N-NO(x)/N-NH(4) ratios >1.2 (stoichiometry of the anammox reaction) and influent S-H(2)S/N-NO(3) ratios >0.57 mgS/mgN (stoichiometry of the sulphide-driven denitrification of nitrate to nitrite). The paper further describes some characteristics of the DEAMOX sludge as well as the preliminary results of its microbiological characterisation.  相似文献   

15.
A.S. Shanmugam 《Water research》2010,44(18):5474-5480
Anaerobic treatment of low strength, high flow wastewaters can only be effective if the technology employed can meet key hydrodynamic requirements: maximising the contact surface area and contact period between the influent substrate and the biomass solids, minimising solid washout from the reactor and minimising the backpressure across the system. Backpressure or head loss is an important hydrodynamic property of gravity-flow packed bed reactors, where the flow is the resultant of frictional forces between the incoming fluid and the solid packing material through which the wastewater percolates. Excessive backpressure caused by high influent flow-rates can reduce the contact surface area and increase the influent head on the upstream side of the biomass bed leading to overflow spills, unstable performance and process failure. This study investigates the factors affecting backpressure across a Granular bed baffled reactor (GRABBR) with variable baffle positions. Experimental results were used to develop a mathematical model to quantify backpressure based on physical characteristics of the seed biomass, fluid-flow conditions and reactor geometry. Results have shown that for a constant flow rate the anaerobic baffled reactor exhibits the least backpressure characteristics when both the upflow and downflow areas are roughly 50% of the total compartmental width.  相似文献   

16.
Gupta AB  Gupta SK 《Water research》2001,35(7):1714-1722
High strength domestic wastewater discharges after no/partial treatment through sewage treatment plants or septic tank seepage field systems have resulted in a large build-up of groundwater nitrates in Rajasthan, India. The groundwater table is very deep and nitrate concentrations of 500-750 mg/l (113-169 as NO3(-)-N) are commonly found. A novel biofilm in a 3-stage lab-scale rotating biological contactor (RBC) was developed by the incorporation of a sulphur oxidising bacterium Thiosphaera pantotropha which exhibited high simultaneous removal of carbon and nitrogen in fully aerobic conditions. T. pantotropha has been shown to be capable of simultaneous heterotrophic nitrification and aerobic denitrification thereby helping the steps of carbon oxidation, nitrification and denitrification to be carried out concurrently. The first stage having T. pantotropha dominated biofilm showed high carbon and NH4(+)-N removal rates of 8.7-25.9 g COD/m2 d and 0.81-1.85 g N/m2 d for the corresponding loadings of 10.0-32.0 g COD/m2 d and 1.0-3.35 g N/m2 d. The ratio of carbon removed to nitrogen removed was close to 12.0. The nitrification rate increased from 0.81 to 1.8 g N/m2 d with the increasing nitrogen loading rates despite a high simultaneous organic loading rate. However, it fell to 1.53 g N/m2 d at a high load of 3.35 g N/m2 d and 32 g COD/m2 d showing a possible inhibition of the process. A simultaneous 44-63% removal of nitrogen was also achieved without any significant NO2(-)-N or NO3(-)-N build-up. The second and third stages, almost devoid of any organic carbon, acted only as autotrophic nitrification units, converting the NH4(+)-N from stage 1 to nitrite and nitrate. Such a system would not need a separate carbon oxidation step to increase nitrification rates and no external carbon source for denitrification. The alkalinity compensation during denitrification for that destroyed in nitrification may also result in a high economy.  相似文献   

17.
A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca2+. Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO3-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO3-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO2-N reduction rate was around three times lower than the reduction rate of NO3-N, which led to NO2-N accumulation at high loadings.  相似文献   

18.
Improved brine recycling during nitrate removal using ion exchange   总被引:2,自引:0,他引:2  
Bae BU  Jung YH  Han WW  Shin HS 《Water research》2002,36(13):3330-3340
Ion exchange technology is currently the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. For this purpose, a novel spent brine recycling system using combined biological denitrification and sulfate reduction processes was developed for more efficient reuse of brine. A granular activated carbon (GAC) adsorption column was introduced as an additional step to prevent contamination of resins by bio-polymers and dissolved organics present in the bio-reactor effluent. Two upflow sludge blanket reactors (USBRs) were operated in series for 166 days to provide denitrification and sulfate reduction. The denitrification reactor provided a nitrate removal efficiency of 96% at a nitrate-N loading rate of 5.4 g NO3(-)-N/l d. The sulfate reduction efficiency of the sulfate reduction reactor remained approximately 62% at a sulfate loading rate of 1.8 g SO4(2-)/l d. Five ion exchange columns containing A520E resins were repeatedly operated in up to 25 cycles of service and regeneration using five kinds of brine: one virgin 3% NaCl and four differently recycled spent brines. Throughput decreased remarkably when the biologically recycled brine was not treated with the GAC column, probably due to the presence of bio-polymers and dissolved organic compounds. The sulfate reduction reactor placed after the denitrification step increased the bicarbonate concentration, which could be used as a co-regenerant with chloride. The inclusion of the sulfate reduction reactor into the conventional brine recycling system allowed more efficient reuse of brine, resulting in both reduced salt consumption and brine discharge.  相似文献   

19.
Although traditionally not taken into account by most of activated sludge models the production of nitrite as an intermediate of the nitrification-denitrification processes becomes of interest in some specific plant operational situations or in case of high sensitivity of the receiving ecosystems. The Activated Sludge Model No.3 (ASM3) was therefore extended for two-step nitrification and two-step denitrification in order to better describe nitrite dynamics especially during the treatment of communal wastewater. Nitrite was included as a new model compound and as an intermediate product of biological processes, both for heterotrophic and autotrophic bacteria. Two new model compounds replace XA, the original autotrophic biomass: Ammonium Oxidizing Bacteria, XAOB and Nitrite Oxidizing Bacteria, XNOB. Growth and decay processes of nitrifiers were split into AOB and NOB processes (3 additional processes) and heterotrophic anoxic processes were also doubled in order to account for two-step denitrification (4 additional processes).Default values from literature as well as laboratory measurements were considered for the choice of kinetic and stoichiometric parameters. The model was calibrated and validated with laboratory scale tests in batch reactors and with data from an Eawag activated sludge pilot plant configured conventionally with nitrification and pre-denitrification for the treatment of communal wastewater.  相似文献   

20.
A kinetic model for autotrophic denitrification using elemental sulfur   总被引:6,自引:0,他引:6  
Increasing prices for methanol and other petrochemicals have decreased the attractiveness of biological dentrification processes which require such compounds. An alternative to such treatment systems is an autotrophic process using enrichment cultures of Thiobacillus denitrificans fed reduced sulfur compounds. Elemental sulfur appears to be the most promising substrate for this system due to its low cost and ease of handling. However, present models for microbial growth are inadequate to describe growth at high biomass density on a water-insoluble solid substrate such as elemental sulfur. This paper presents a model to describe such a system, and experimental evidence of its validity. The model recognizes three steps which could limit the observed rate of denitrification. (1) Sulfur must be solubilized in the attached biofilm and be transported through the film while being simultaneously removed by microbial reaction. (2) Nitrate must be transported from the bulk liquid to the biofilm surface. (3) Nitrate must be transported through the biofilm where it is microbially reduced to nitrogen gas. The model predicts and experimental evidence verifies that the unit rate of denitrification will be proportional to the ratio of the sulfur concentration to the biomass concentration when this ratio is low and nitrate is in excess. At high values of this ratio, the unit rate is observed to approach a maximum as predicted by the model. The accuracy of the model's prediction for the dependence of the unit rate of denitrification on the concentration of nitrate could not be evaluated due to very low concentrations of nitrate measured in the steady-state reactors. Available evidence also supports the prediction of the model that, at low values of the sulfur to biomass ratio, the activation energy of the reaction is about half the value that would be observed at higher sulfur to biomass ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号