首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了快速热退火时离子注入硅中磷的扩散。我们依靠注入的剂量发现了两种截然不同的扩散行为。低剂量(1×10~(14)cm~(-2))P~+注入硅发现有一个剖面再分布,该再分布在900℃温度下退火10秒钟即可观察到,但在800~1150℃温度范围与温度无关。这个初给再分布比起通常的扩散系数数质所预计的要快得多。高剂量(2×10~(15)cm~(-2))P~+注入硅经短时(10秒)退火后掺杂剂分布的变宽现象与温度有密切关系,其实验分布与浓度增强扩散分布是一致的。  相似文献   

2.
本文报道了用选择性低压化学汽相淀积钨和石墨快速退火降低金属与扩散形成的n~+、p~+浅结的接触电阻率.发现硼扩散或磷扩散浓度以及退火温度对接触电阻率都有影响,钨硅之间无明显的相互扩散.采用这种技术,钨与n~+、p~+硅的接触电阻率分别低达(1.5~4)×10~(-7)和(1~3)×10~(-7)Ω·cm~2.但与掺杂浓度较低的掺硼硅的接触电阻率较大.  相似文献   

3.
本文报道BF_2~+注入的多晶硅薄膜经快速热退火后的物理和电学性质。发现造成氟异常分布的原因是由于快速热退火过程中氟的外扩散以及在多晶硅/二氧化硅界面处的聚集。在注入剂量为1×10~(15)和5×10~(15)cm~(-2)的样品中,经快速热退火后可以观察到氟泡。  相似文献   

4.
0.5μm厚的多晶硅膜淀积在热生长的SiO_2上。淀积源是SiH_4,而氮气是用来稀释周围气氛的。杂质硼和磷原子分别以70和170KeV的能量注入,以便使注入深度达到膜厚的一半。注入剂量为1×10~(12)到1×10~(15)cm~(-2)。所有的样品在1000℃下热处理30分钟,目的是减少由离子注入引起的损伤并使杂质均匀地分布在多晶硅中以便使掺杂浓度可以描述为剂量与膜厚的关  相似文献   

5.
本文研究了硼离子注入硅的载流子浓度分布.实验表明,载流子浓度分布可以近似用线性扩散方程的解来描述.因此,通过结深的实验值得到了一套随注入剂量,退火温度和时间变化的扩散系数.用这套扩散系数又可以计算出能量 40-400keV,剂量5×10~(13)-1×10~(15)cm~(-2),退火温度900℃-1100℃,退火时间15分-2 小时这个范围内的载流子浓度分布.  相似文献   

6.
<正> 制作平面Gunn畴雪崩器件的材料是在掺Cr的高阻GaAs衬底上汽相外延一层n-GaAs,其电子浓度为1×10~(15)~1×10~(18)cm~(-3),厚度为6~15μm,迁移率为4000~7500cm~2/V·s。在这样的材料上生长SiO_2,常压下,当衬底温度大于630℃时,由于As的升华,使GaAs的晶体完整性受到损坏,而在较低温度下(如420~450℃)淀积时,SiO_2常出现破裂或脱落现象。 GaAs的热膨胀系数为5.9×10~(-6)℃~(-1),而SiO_2为0.4×10~(-6)℃~1,相差一个数量级以上;此外,SiO_2的应力,300K时为1~6×10~3N/cm。实验表明,在GaAs上淀积的SiO_2厚度超过5000(?)时便产生破裂。而P_2O_5在GaAs上淀积1500(?),却未观察到裂纹,因为P_2O_5的热  相似文献   

7.
采用汞蒸汽等离子体阴极溅射技术,已同时在几种CdTe衬底上(总面积为20cm~2)外延生长了Cd_xHg_(1-x)Te薄膜。薄膜在加热到310℃的衬底上生成,其淀积速率为0.6μm.h(总厚度≤30μm)。采用不同的实验方法对薄膜的结晶学特性进行了分析,这些方法包括:反射X-射线形貌、衍射分布图的半值宽度(FWHM)测量、透射电子显微镜分析(TEM)和卢瑟福反向散射分析(RBS)。TEM法,摆动曲线和RBS的结果揭示出薄膜具有很高的结晶学质量(外延层内的位错密度接近10~4cm~(-2))。在4K和300K之间测量了Cd_xHg_(1-x)Te外延层的霍耳系数。衬底温度为285℃时淀积的外延层(镉的组分为0.23,厚度16μm),在77K测量的结果是:载流子浓度n大约为2.7×10.(16)cm~(-3);霍耳迁移率为64000cm~2·V~(-1·S~(-1)。当镉的组分为0,31时(外延层厚度为18μm),则得到n=1.6×10~(16)cm~(-3);霍耳迁移率为16000cm~2·V~(-1)·S~(-1)。淀积出来的外延膜在双温区炉子内的汞气氛中退火后,其电学性质得到改善。n型外延膜的电子迁移率提高到接近用非最佳退火参量得到的体材料的水平。  相似文献   

8.
本文对于低压化学汽相沉淀方法沉积的多晶硅薄膜的电导性能进行了研究,并与大气压下沉积的薄膜的导电性能作了比较。低压薄膜在580℃和620℃下沉积成,然后用离子注入法掺入磷。在620℃下沉积的薄膜是多晶膜,而在580℃下沉积的薄膜最初是无定形膜,但经过热处理后,它就变成结晶膜。对于两种不同掺磷剂量的低压膜,研究了退火温度对电阻率的影响,发现电阻率随退火温度的升高而减小。580℃下沉淀的薄膜经退火后,它的电阻率总是比620℃下沉淀的薄膜的电阻率低,而且在退火温度较低的情况下,两者的差别最为显著。在第二组实验中,注入的磷量范围很宽,相当于平均掺杂浓度在2×10~(15)—2×10~(20)cm~(-3)之间。只有在浓度低于2×101~(15)cm~(-3)和高于2×10~(20)cm~(-3)的情况下,电阻率才是掺杂浓度的一个慢变化函数(Slowfunction);而浓度在2×10~(15)cm~(-3)和2×10~(20)cm~(-3)之间时,掺杂浓度稍有改变就会使电阻率发生很大的变化。如上所述,在580℃沉淀的薄膜,其电阻率总是最低,在掺杂浓度居于中间的情况下,这尤其显著。测量了霍尔迁移率,发现它在掺杂浓度近于6×10~(18)cm~(-3)时有一最大值,而且随掺杂浓度降低急速减小。可以预料,所观察到的霍尔迁移率的这种变化特性与薄膜是由含有大量载流子陷阱的晶粒间界环绕的微晶构成这一解释相一致。  相似文献   

9.
文本采用SIMS技术,分析了BF_2~+注入多晶硅栅退火前后F原子在多晶硅和SiO_2中的迁移特性。结果表明,80keV,2×10~(15)和5×10~(15)cm~(-2) BF_2~+注入多晶硅栅经过900℃,30min退火后,部分F原子已扩散到SiO_a中。F在多晶硅和SiO_2中的迁移行为呈现不规则的特性,这归因于损伤缺陷和键缺陷对F原子的富集作用。  相似文献   

10.
本文用XRD,RHEED和SEM对LPCVD掺氧多晶硅的结晶学性质进行了研究.结果表明,对于含氧量为8~37at%预淀积SIPOS薄膜其结构呈无定形.当进行高温热退火(T_a≥900℃)时,薄膜经历了一个再结晶过程.晶粒度的大小与退火条件有关;而修氧多晶硅中的含氧量对再结晶过程具有抑制作用.  相似文献   

11.
方芳 Wang.  LC 《电子学报》1990,18(5):111-113,126
利用电子束蒸发依次将Pd,Si和Al淀积在掺杂浓度为2×10~(13)cm~(-3)的n型GaAs上,可以得到非合金、低阻的欧姆接触。比接触电阻率约为5×10~(-6)·cm~2。但经过高温(410℃),长时间热退火后,样品的表面会出现明显不平整,比接触电阻率会明显增加,在Al和Si/Pd之间加入一层Ti作为扩散势垒会使欧姆接触的热稳定性变好。但只有在Al和Ti之间的反应没有完全耗尽Ti时,扩散势垒才起作用。  相似文献   

12.
研究了在200℃热靶条件下经Si~+单注入和S~++P~+双注入的半绝缘InP常规热退火和快速热退火后的电学特性。热退火后,双注入样品中的电学性能优于单注入样品。采用快速热退火后,双注入的效果更加显著。Si~+150keV,5×10~(14)cm~(-2)+P~+160keV,5×10~(14)cm~(-2)双注入样品经850℃、5秒快速效退火后,最高载流子浓度达2.6×10~(19)cm~(-3),平均迁移率为890cm~2/V·s。  相似文献   

13.
研究干氧和湿氧(95℃H_2O)氧化膜厚度在0.10~1.0μ,温度在920℃~1200℃的范围内重掺杂硅氧化特性,研究硅掺硼(1×10~(16)~2.5×10~(20)cm~(-3))或掺磷(4×10~(15)~1.5×10~(20)cm(-3)),以及这两种元素在硅表面的淀积。当硼浓度大于1×10~(20)/cm~3的情况,所有温度下氧化速率增加,而干氧氧化时这种影响最明显。1000℃以上,P掺硅氧化速率增加没有这样快,而920下,P的浓度1×10~(19)cm~(-3)或更高,结果使氧化速率有明显的增加,磷掺杂的影响在湿氧中最明显,这个结果可以用改硅热氧化时杂质再分布来园满地介释。这些考虑还能得到其他杂质重掺杂影响氧化速率的试验值。 高温度下,硅在各种氧化气氛中反应生成SiO_2,单晶硅热氧化的动力学是最近几篇论文的题目(1-5)。这些论文作者报导了起过所研究的浓度范围时氧化速率不依赖于体掺杂浓度。受主杂质和花主杂质的浓度从很低的值(本证硅)到大概象1×10~(20)cm~(-3)那样高,然而还要注意,氧化杂质浓度大于10~(20)cm~(-3)的硅表面时,氧化速率经常偏离标准值为6或7。对于大部分偏差用做器件的扩散工艺的样品来发现的。近来,发展表面控制器件和集成电路中哇氧化的作用日益重要,同时精密控制氧化层的厚度变得更有兴趣(8,9)。因此,着于研究决定对掺杂  相似文献   

14.
在130℃用激光诱发淀积法(LAD)在(111)A面CdTe衬底上生长了n型Hg_(0.7)Cd_(0.3)Te。在77K,其电子迁移率为4000~7000cm~2/V·s,载流子浓度为(0.7~3)×10~(16)cm~(-3)。外延薄膜经过410℃退火后可以转变成p型。已用离子注入制成了n~+/p光电二极管。  相似文献   

15.
掺砷多晶硅发射极RCA晶体管   总被引:1,自引:0,他引:1  
研究了掺砷多晶硅发射极RCA晶体管的工艺实验技术.以先进多晶硅发射极器件制备工艺为基础,在淀积发射极多晶硅之前,用RCA氧化的方法制备了一层超薄氧化层,并采用氮气快速热退火的方法处理RCA氧化层,制备出可用于低温超高速双极集成电路的掺砷多晶硅发射极RCA晶体管.晶体管的电流增益在-55—+125℃温度范围内的变化率小于15%,而且速度快,发射区尺寸为4×10μm2的RCA晶体管其特征频率可达3.3GHz.  相似文献   

16.
Mao  BY 肖辉杨 《微电子学》1989,19(5):28-31,42
本文研究了在不同氧剂量下,由氧注入绝缘体上在(SOI)衬底制得的CMOS器件的特性。结果表明,当氧剂量由2.25×10~(18)cm~(-2)减少到1.4 ×10~(18)cm~(-2)时,晶体管结泄漏电流改善了几个数量级。浮体效应(即在较低的栅电压下晶体管的导通状态,当漏极电压增大时,亚阈值斜率也大为改善)由于泄漏电流和氧剂量的减少而得到增强。采用1.4×10~(18)cm~(-2)氧剂量注入,并在1150℃退火的SOI衬底,其背沟迁移率比无沉淀物硅薄膜的迁移率降低了几个量级。这些器件特性与硅-氧化物埋层界面的微结构相关,这种微结构受氧注入及氧注入后退火的控制。  相似文献   

17.
随着集成度的提高,要求芯片的线条进一步缩小,但根据按比例缩小原则,纵向尺寸也必须减小。因此VLSI要求p—n结的结深越来越浅。离子注S和快速热退火为制备这种高浓度浅p—n结提供了一种要求的手段。当然离子注入产生的辐照缺陷及其在退火过程中的行为就自然受到人们的注意。由于砷在硅中固溶度较高、扩散系数小,离子注入的平均投影射程小等一系列特点,在制备高浓度、浅N+P结方面引起了相当的重视。本文研究了砷注入硅快速热退火后缺陷的特性。即砷注入硅后经不同温度不同时间退火后的缺陷。所用的试样为6—8ΩcmP—型<100>硅片,经室温120kev砷离子注入,剂量为1×10~(16)cm~(-2),分别在900℃、1000℃、1080℃和1150℃不同时间红外退火。並利用霍尔效应和剥层技术测定载流子浓度分布,  相似文献   

18.
本文研究了硼离子注入硅经红外辐照退火后的热处理特性.实验发现,对于20keV,3.5×10~(14)cm~(-2)~(11)B离子注入硅样品,经10秒到几十秒红外辐照后再进行不同温度的后热处理,表面薄层电阻随退火温度呈规律性变化,在1050℃附近达到最小值,此时杂质的电激活率大于100%.  相似文献   

19.
湿氧中温度范围为700—850℃,根据线性——抛物线的速率定律来研究重掺磷多晶硅及单晶硅衬底的特性·不掺杂或以1.1×10~(19)—2.2×10~(21)cm~(-3)的磷用扩散法或离子注入法均匀掺杂的多晶硅被用来与轻掺杂或重掺杂硅衬底的(100)、(110)和(111)面比较研究·磷浓度大于1×10~(20)cm~(-3)引起氧化速率的显著增加,然而超过1×10~(21)cm~(-3)氧化速率趋向于变成饱和·观察到氧化初始阶段的快速氧化。初始氧化并不适合线性——抛物线的速率定律·掺磷多晶硅的电阻率对磷浓度约6×10~(20)cm~(-3)有一个最小值为5×10~(-4)Ω-βm·多晶硅厚度被氧化减小以后,初始的电阻率几乎保持常数·另外,没有观察到沿着晶粒边界有增强氧化的迹象。  相似文献   

20.
以浓掺杂的多晶硅做为扩散源用在薄基区晶体管的砷扩散和磷扩散的一种新工艺已经发展起来。它包含用化学气相淀积方法淀积掺杂的多晶硅(掺杂的多晶硅以下称为DOPOS)和在氧化环境中的扩散过程。扩散过程中,在DOPOS表面上形成硅氧化膜,它阻止了杂质的外扩散并导致了杂质在DOPOS层中的凝聚。这样一来,通过1000℃的扩散可以在硅衬底中引起大约2×10~(20)原子/厘米~3的高表面浓度。背面散射分析表明在DOPOS和硅衬底的接触面上没有杂质积累;也就是说没观察到堆积现象。DOPOS工艺在重复性和器件大量生产方面是优越的,尤其作为砷发射极扩散方法更有效。由于在扩散过程以后在发射区上面保留了DOPOS,因此成功地防止了铝电极引起的发射极-基极短路。在单个晶体管情况下(As—DOPOS),f_T达5千兆赫;对电流型逻辑门电路的单片集成电路(P—DOPOS),t_(oa)在35毫瓦/门电路时达0.6毫微秒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号