首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of buthionine sulfoximine (BSO) selectively inhibits glutathione (GSH) biosynthesis and induces a GSH deficiency. Decreased GSH levels in the brain may result in less oxidative stress (OS) protection, because GSH contributes substantially to intracellular antioxidant defense. Under these conditions, administration of the pro-oxidant, dopamine (DA), which rapidly oxidizes to form reactive oxygen species, may increase OS. To test the cognitive behavioral consequences of decreased GSH, BSO (3.2 mg in 30 microliters, intracerebroventricularly) was administered to male Fischer 344 rats every other day for 4 days. In addition, DA (15 microliters of 500 microM) was administered every day [either 1 h after BSO (BSO + DA group) or 1 h before BSO (DA + BSO group), when given on the same day as BSO] and spatial learning and memory assessed (Morris water maze, six trials/day). BSO + DA rats, but not DA + BSO rats, demonstrated cognitive impairment compared to a vehicle group, as evidenced by increased latencies to find the hidden platform, particularly on the first trial each day. Also, the BSO + DA group utilized non-spatial strategies during the probe trials (swim with no platform): i.e., less time spent in the platform quadrant, fewer crossings and longer latencies to the previous platform location, and more time spent in the platform quadrant, fewer crossings and longer latencies to the previous platform location, and more time spent around the edge of the pool rather than in the platform zone. Therefore, the cognitive behavioral consequences of decreasing GSH brain levels with BSO in conjunction with DA administration depends on the order of administration. These findings are similar to those seen previously on rod and plank walking performance, as well as to those seen in aged rats, suggesting that the oxidation of DA coupled with a reduced capacity to respond to oxidative stress may be responsible for the induction of age-related cognitive deficits.  相似文献   

2.
The adverse effects of the maternal consumption of alcohol on the fetus have been recognized for centuries. Fetal alcohol syndrome is characterized by pre- and postnatal growth retardation, mental retardation, behavioral deficits, and facial deformities. Despite numerous animal studies, the biochemical mechanism(s) by which alcohol produces teratogenic effects on the developing fetus are not well understood. Several studies have shown that administration of alcohol to adult rats produces a decrease in hepatic levels of glutathione (GSH). In utero administration of alcohol has also been shown to produce a decrease in GSH levels, as well as prenatal growth retardation and intrauterine death. In an effort to determine if GSH may have a vital role in protecting the fetus against the teratogenic effects of alcohol, buthionine (SR)-sulfoximine (BSO) was used to deplete GSH levels in the mother and fetus. Timed pregnant Sprague-Dawley rats were placed on a liquid BioServ diet containing either 0%, 11%, 23%, 29%, 31%, 33%, or 35% ethanol-derived calories, with or without BSO (888 mg/kg/24 hr), starting on day 1 of pregnancy. Another set of mothers were fed lab chow and water as a control group for the liquid diet. The mothers were maintained on the diet until gestation day 21 when they were anesthetized with sodium pentobarbital and the pups delivered by cesarean section. The offspring were counted, weighed, killed, and the brain and liver weighed. The effects of BSO on the alcohol dose-response curves (body weights, brain weights, and litter number) were then determined to ascertain if a depletion in GSH potentiated the effects of alcohol. In utero administration of BSO, aside from the depletion of GSH in the liver and brain in the developing fetus, produced a shift to the left in the alcohol dose-response curve.  相似文献   

3.
The effects of glutathione (GSH) depletion on the in vivo formation of cyclic 1,N2- propanodexoxyguanosine adducts (AdG and CdG) as background lesions in the liver DNA of F344 rats were investigated. A group of 5 male F344 rats were given drinking water containing 30 mM L-buthionine (S,R)-sulfoximine (BSO) for 21 days, and another group of 8 rats were given only drinking water as controls. The BSO-treated rats had significantly lower weight gain than control rats. The hepatic GSH levels in the BSO-treated group were reduced by 84% as compared with the control group, from 4.43 to 0.72 mumol/g of tissue. The isomeric AdG3, CdG1, and CdG2 were detected by the 32P-postlabeling/HPLC method in the liver DNA of rats without carcinogen treatment, as we reported previously [Nath, R. G., and Chung, F.-L. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 7491-7495. Nath, R. G., et al. (1996) Cancer Res. 56, 452-456]. The mean levels (mumol/mol of guanine) for AdG3, CdG1, and CdG2 were 0.57 +/- 0.25, 0.15 +/- 0.18, and 0.16 +/- 0.22 for the control group and 1.18 +/- 1.03, 3.16 +/- 3.26, and 2.50 +/- 2.59 for the BSO group, respectively. These increases correspond to approximately 2-fold for AdG and 15-21-fold for CdG adducts. The dramatic increase in the cyclic adduct levels in rat liver DNA could have resulted mainly from GSH depletion as a result of the BSO treatment, even though other unknown effects due to the toxicity of BSO cannot be ruled out. These results suggest that GSH plays an important role in protecting the liver against cyclic propano DNA adduction and provide further support for the endogenous origin of these adducts.  相似文献   

4.
Free radical-mediated esophagitis was studied during duodenogastroesophageal reflux (mixed reflux) or acid reflux in rats. The influence of reflux on esophageal glutathione levels was also examined. Mixed reflux caused more gross mucosal injury than acid reflux. Gross mucosal injury occurred in the mid-esophagus. Total glutathione (GSH) in the esophageal mucosa of control rats was highest in the distal esophagus. The time course of esophageal GSH in rats treated by mixed reflux showed a significant decrease 4 hr after initiation of reflux, followed by a significant increase from the 12th hour on. Mucosal GSH was increased in both reflux groups after 24 hr but significantly more so in the mixed than in the acid reflux group. The free radical scavenger superoxide dismutase (SOD) prevented esophagitis and was associated with decreased GSH levels. GSH depletion by buthionine sulfoximine (BSO) prevented esophagitis and stimulated SOD production in the esophageal mucosa. It is concluded that gastroesophageal reflux is associated with oxidative stress in the esophageal mucosa. The lower GSH levels in the mid-esophagus may predispose to damage in this area. Duodenogastroesophageal reflux causes more damage than pure acid reflux. Oxidative stress leads to GSH depletion of the esophageal mucosa in the first few hours following damage but then stimulates GSH production. GSH depletion by BSO does not worsen esophagitis since it increases the esophageal SOD concentration.  相似文献   

5.
We studied the potentiation of doxorubicin (DOX) activity in multidrug-resistant (MDR) cells by buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, and by cepharanthine (CE), which interacts with P-glycoprotein. The glutathione (GSH) of MDR cells was approximately 1.5-fold greater than that of the parental cell line. BSO reduced GSH content of MDR cells compared to that of the sensitive ones. The BSO treatment (50 microM) enhanced the effect of DOX by 1.8-fold, while CE caused a greater reversal of drug resistance. The combination of BSO with CE produced further potentiation of DOX activity in an antiproliferative effect. Pretreatment of cells with BSO did not alter the cellular accumulation of DOX in the absence or presence of CE. The addition of BSO (30 mM) to the drinking water of mice reduced the tissue levels of GSH in tumor cells, suggesting that the marked decrease in GSH might diminish the ability of that tumor to resist DOX. Combined administration of CE and DOX resulted in enhancement of DOX antitumor activity and prolongation of survival time. The survival of mice treated with BSO and CE as a supplement to DOX treatment was superior that of mice receiving DOX alone. These studies demonstrated that the combinations of BSO with CE may be useful for killing drug-resistant tumor cells.  相似文献   

6.
L-buthionine-S,R-sulfoximine (BSO) selectivley inhibits glutathione (GSH) synthesis. Malignant melanoma may be uniquely dependent on GSH and its linked enzymes, glutathione S-transferase (GST) and GSH-peroxidase, for metabolism of reactive orthoquinones and peroxides produced during melanin synthesis. We compared the in vitro effects of BSO on melanoma cell lines and fresh melanoma specimens (n = 118) with breast and ovarian cell lines and solid tumors (n = 244). IC50 values (microM) for BSO on melanoma, breast and ovarian tumor specimens were 1.9, 8.6, and 29, respectively. The IC90 for melanoma was 25.5 microM, a level 20-fold lower than steady state levels achieved clinically. The sensitivity of individual specimens of melanoma correlated with their melanin content (r = 0.63). BSO synergistically enhanced BCNU activity against melanoma cell lines and human tumors. We followed GSH levels, GST enzyme activity, GST isoenzyme profiles and mRNA levels after BSO. BSO (50 microM) treatment for 48 hr resulted in a 95% decrease in ZAZ and M14 melanoma cell line GSH levels, and a 60% decrease in GST enzyme activity. GST-mu protein and mRNA levels were significantly reduced in both cell lines. GST-pi expression was unaffected. These data suggest that BSO action on melanoma may be related to GSH depletion, diminishing the capacity to scavenge toxic metabolites produced during melanin synthesis. We report here for the first time that BSO enhancement of alkylator action may be related in part to down regulation of GST. BSO may be a clinically useful adjunct in the treatment of malignant melanoma.  相似文献   

7.
Sphincter of Oddi dysfunction is associated with chronic pancreatitis   总被引:1,自引:0,他引:1  
To clarify whether the content of glutathione (GSH) in the brain can be estimated by the uptake of 99mTc-meso-HMPAO, we conducted the following in vivo and in vitro experiments. METHODS: We investigated the effect of diethyl maleate (DEM) and buthionine sulfoximine (BSO) administration on the brain uptake of 99mTc-meso-HMPAO in the mouse, rat and rabbit, and the chemical specificity of in vitro interaction of 99mTc-HMPAO to GSH using measurements of octanol-extractable radioactivity as an index of remaining intact tracer. RESULTS: The uptake of 99mTc-meso-HMPAO in the mouse and rat brain were reduced together with decreased content of GSH by preloading of DEM, a GSH depletor that acts through glutathione S-transferase. Neither 99mTc-meso-HMPAO uptake nor GSH content was affected in the rabbit brain. Similarly, the uptake of 99mTc-meso-HMPAO and GSH content in the mouse brain was reduced by preinjection of BSO, a GSH depletor that acts through gamma-glutamylcysteine synthetase. In an in vitro study, 99mTc-HMPAO showed reactivity to the molecules possessing a -SH group, but were not specific to GSH. The order of 99mTc-meso-HMPAO reactivity to the mouse brain homogenate agreed with the order of GSH concentration: normal > BSO > DEM. GSH was a major contributor to the conversion reaction of 99mTc-meso-HMPAO to hydrophilic complex in mouse brain homogenate. CONCLUSION: GSH may have a major responsibility for trapping 99mTc-HMPAO in the brain, suggesting the possibility of in vivo measurement of brain GSH with 99mTc-meso-HMPAO.  相似文献   

8.
The striatum contains a high concentration of oxidizable dopamine (DA), and the aged organism shows a decreased ability to respond to oxidative stress (OS), making this area extremely vulnerable to free radical insult. To determine the receptor specificity of this putative increase in OS sensitivity, striatal slices from 6- and 24-month-old animals were incubated (30 min, 37 degrees C) in a modified Krebs medium containing 0 to 500 microM DA with or without a preincubation (15 min) in a nitrone trapping agent, 1 or 5 mM alpha-phenyl-n-tert-butyl nitrone (PBN), and changes in low Km GTPase activity (an index of receptor-G protein coupling/uncoupling) assessed in muscarinic, 5-HT1A D1, and D2 receptors stimulated with carbachol, 8 OH-DPAT-HBr, SKF 38393, or quinelorane, respectively. DA exposure induced selective decreases in the stimulated activity in all of these receptor systems, and an overall increase in conjugated dienes (56%) of the young. In the case of carbachol and 8 OH-DPAT-HBr, the DA-induced deficits in GTPase stimulation were seen primarily in the young (61 and 32%, respectively), while DA-induced deficits in quinelorane (D2) stimulation were seen in both age groups. In the case of SKF 38393-stimulation (D1) the DA-induced deficits were higher in the striatal tissue from the old. The DA-induced decreases in carbachol stimulated GTPase activity in the tissue from the young could be prevented by pretreatment with PBN or the DA uptake inhibitor, nomifensin. No effect of nomifensin was seen in the old, because their DA uptake mechanisms were already compromised. These results suggest that although age-related declines in DA uptake may provide some protection against the OS effects in muscarinic or 5-HT1A receptors, other factors may increase the vulnerability of DA neurons to OS, even with reductions in DA uptake.  相似文献   

9.
Four experiments were conducted to determine the effects of dopamine (DA) antagonists and DA depletions on progressive-ratio responding for food reinforcement. On this schedule, ratio requirement increased by one response after each reinforcer was obtained, and rats were tested in 30-min sessions. Response rates and highest ratio completed were reduced in a dose-related manner by systemic injections of the D1 antagonist SCH 23390, and also by the D2 antagonists haloperidol and raclopride. Drug-treated rats also showed reductions in time to complete the last ratio, demonstrating that they had stopped responding before the end of the session. DA depletions produced by injections of 6-OHDA directly into the nucleus accumbens substantially decreased both the number of responses and the highest ratio completed. The deficits in response number and highest ratio completed induced by DA depletions persisted through the first 3 weeks of postsurgical testing, with some recovery by the fourth week. However, the deficits resulting from dopamine depletions were largely a manifestation of a decrease in response rate; although time to complete the last ratio was significantly reduced by dopamine depletions in the first few days of testing, rats recovered on this measure by the fifth day after surgery. Although previous work has shown that performance on several schedules (e.g., continuous, low value ratios, variable interval) is relatively unaffected by accumbens DA depletions, the present data demonstrate that such depletions do produce a substantial and persistent impairment of progressive ratio response output. Rats with accumbens DA depletions appear to have deficits in maintaining the high work output necessary for responding at large ratio values. The relative sparing of responding on some simple schedules, together with the present progressive ratio results, suggest that rats with accumbens DA depletions remain directed toward the acquisition and consumption of food, but they show deficits in work output for food.  相似文献   

10.
1- The effects of monosialoganglioside GM1 were studied on a new model of tardive dyskinesia, i.e., the frequency of spontaneous tongue protrusions in rats repeatedly treated with reserpine. 2- Rats were co-treated with vehicle (VEH) or reserpine (RES) (0.1 mg/kg, s.c., every other day) and saline (SAL) or GM1 (5 mg/kg, i.p., every day) for 30 days and observed for tongue protrusions on days 10, 20 and 30. 3- During each test day animals of the RES + SAL group exhibited an increase in tongue protrusions relative to rats of the VEH + SAL group. However, rats of the RES + GM1 group showed an increased frequency of tongue protrusions only on day 10, when compared to animals of the VEH + SAL group. There were no significant differences in tongue protrusion frequency between the VEH + GM1 and the VEH + SAL groups. 4- These results differ from previous studies which reported a facilitatory effect of GM1 co-administration on conventional behavioral animal models of tardive dyskinesia. The possibility is raised that GM1 attenuates the reserpine-induced increase in tongue protrusions through its protective effect on glutamate/oxidative stress neurotoxicity.  相似文献   

11.
In 3- and 18-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), noradrenaline (NA), uric acid, glutathione (GSH) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined by HPLC in the striatum and/or in the brainstem 24 h after single injections of MPTP (12-35 mg/kg i.p.). Aged rats had lower baseline levels of AA and GSH, compared to young rats. In aged rats, MPTP 35 mg/kg induced a 70% death rate and a decrease in striatal DOPAC/DA ratio which was significantly correlated to MPP+ concentrations (r = -0.840, P < 0.005); in addition, MPTP did not increase AA oxidation. In the brainstem, the MPTP-induced decrease in NA levels and increase in uric acid levels were significantly correlated to the MPP+ concentrations (r = -0.709, P < 0.05, and r = +0.888, P < 0.001, respectively). In conclusion, evidence is given of a mechanism of toxicity of MPTP involving oxidative stress produced by xanthine oxidase; in addition, in aged rats the neuronal antioxidant system (levels of AA and GSH) is considerably lower than in young rats and may play an enabling role in the MPTP age-related neurotoxic effects on striatum and brainstem.  相似文献   

12.
Young DA/HAN strain rats were submitted to an equilibrium test consisting in maintaining equilibrium upon a rotorod rotating at 10 or 20 rpm. They were either intact or lesioned, the lesion consisting in destruction of the inferior olivary complex (IOC) by 50-95 mg/kg i.p. administration of 3-acetylpyridine (3-AP) at day 15, followed, 2 to 4 h later, by i.p. injection of niacinamide (300 mg/kg). All the 3-AP-treated animals included in this study were completely lesioned, the extent of the lesion being estimated by both the response of the rats to harmaline and histological controls at the end of the experiments. The IOC lesioned rats were either naive (tested at one given day) or trained every day (10 trials per day); among the latters, some were trained before and after the lesion, the others being trained either before or only after. Control rats were submitted to the same training schedule. Both quantitative (time during which the animals maintained the equilibrium upon the rotating rod) and behavioral data (strategy used by the animals to maintain equilibrium) were obtained. The results demonstrate that, compared to those of controls rats, the quantitative and behavioral scores of the IOC lesioned animals were altered. Comparison of naive and trained animals shows that the impairment of the equilibrium behavior is not only due to the ataxia provoked by the IOC lesion but is also due to cognitive deficits. However, prelesion training facilitates the acquisition of a more efficient postlesion equilibrium behavior. From these results, it can be concluded that the olivo-cerebellar pathway is involved in the adaptation of motor behavior to the environmental conditions.  相似文献   

13.
The inhibition of glutathione (GSH) synthesis by L-buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

14.
Intracellular reduced glutathione (GSH) concentrations were measured according to the tissue sampling-time along the 24 h scale in male B6D2F1 mice. A significant circadian rhythm in GSH content was statistically validated in liver, jejunum, colon and bone-marrow (P < or = 0.02) but not in kidney. Tissue GSH concentration increased in the dark-activity span and decreased in the light-rest span of mice. The minimum and maximum of tissue GSH content corresponded respectively to the maximum and minimum of cisplatin (CDDP) toxicity. The role of GSH rhythms with regard to CDDP toxicity was investigated, using a specific inhibitor of GSH biosynthesis, buthionine sulfoximine (BSO). Its effects were assessed on both tissue GSH levels and CDDP toxicity at three circadian times. BSO resulted in a 10-fold decrease of the 24 h-mean GSH in kidney. However a moderate GSH decrease characterized liver (-23%) and jejunum (-30%). BSO pretreatment largely enhanced CDDP toxicity which varied according to a circadian rhythm. Although BSO partly and/or totally abolished the tissue GSH rhythms, it did not modify those in CDDP toxicity. We conclude that GSH have an important influence on CDDP toxicity but not in the circadian mechanism of such platinum chronotoxicity.  相似文献   

15.
16.
Glutathione (GSH) is an important factor involved in the resistance of tumor cells to anticancer agents. Buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, effectively decreases cellular GSH concentrations both in vitro and in vivo. Depletion of GSH by BSO sensitizes a variety of cancer cells to chemotherapeutic agents. Therefore, BSO has been on clinical trial as an anticancer adjuvant. For this purpose, it is important to understand the effect of BSO treatment not only on the sensitivity of tumor cells to anticancer agents, but also on the metabolism and function of normal tissues. The present study was undertaken to determine the effect of BSO treatment on GSH concentrations in the blood, liver, and ovary, and changes in concentrations of ovarian hormones and other important components in plasma. Female Sprague-Dawley rats, 90 days of age, were treated with 2.0 mmol/kg BSO in saline by intraperitoneal injection, twice daily for 7 days. This treatment depressed GSH concentrations in the blood, liver and ovary by 95, 75, and 85%, respectively. Several blood components were measured. These included red blood cells, hemoglobin, ceruloplasmin, hematocrit, mean corpuscular volume and hemoglobin concentration, alkaline phosphatase, urea nitrogen, creatine and creatinine, glucose, cholesterol, triglycerides, triiodothyronine (T3), thyroxine (T4), and hormones including estradiol, progesterone, and prolactin. BSO treatment significantly (P < 0.05) elevated and lowered plasma concentrations of ceruloplasmin and urea nitrogen, respectively, More importantly, plasma concentrations of estradiol and progesterone were decreased markedly (P < 0.05) in the BSO-treated animals. The hormonal results suggest that investigations on the role of BSO-induced GSH depletion in the treatment of malignancies both with and without hormone dependence in women should be undertaken.  相似文献   

17.
The effect of neonatal hippocampal lesions on behavioral sensitivity to amphetamine (AMPH) and dopamine (DA) release in the nucleus accumbens (NAc) were examined. The ventral hippocampus was damaged bilaterally by ibotenic acid on postnatal day 7 (PD7). Spontaneous exploration and AMPH-stimulated locomotor activity were examined on postnatal day 35 (PD35) and day 56 (PD56). Extracellular DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were sampled using in vivo microdialysis while simultaneously AMPH-stimulated locomotion was examined in freely moving rats on PD56. Spontaneous exploration increased in rats with hippocampal lesions relative to controls on PD56 but not PD35. AMPH (0, 0.187, 0.375, 0.75, 1.5, and 3 mg/kg) enhanced locomotion dose-dependently in both control and lesioned groups. Locomotor activity was higher in lesioned rats than controls following AMPH at the dose of 0.75 mg/kg on PD35 and at the doses of 1.5 and 3.0 mg/kg on PD56. The basal level of DA in the NAc was not different between the hippocampal and control groups. AMPH (1.5 mg/kg) induced hyperlocomotion in lesioned rats relative to controls. DA release in the NAc for both groups was enhanced following injections of AMPH. However, neonatal hippocampal lesions had no further enhancement on AMPH-stimulated release of DA as compared to the control group. The levels of DOPAC and HVA in the NAc were altered by AMPH but not lesions. The level of 5-HIAA was not influenced by either lesions or AMPH. The results of neonatal lesion-induced hyperlocomotion suggest that an emergence of behavioral hyperresponsiveness to AMPH was dependent on an interaction of lesions, age of examination, and dose of the drug. A dissociation between the effect of AMPH on lesion-enhanced hyperlocomotion and a lack of a lesion-enhanced DA release in the NAc suggest that presynaptic release of DA had no major contribution to lesion-enhanced DA transmission in the mesolimbic DA system.  相似文献   

18.
Glutathione (GSH) and glutathione S-transferases (GSTs) play an important role in the protection of cells against toxic effects of many electrophilic drugs and chemicals. Modulation of cellular GSH and/or GST activity levels provides a potentially useful approach to sensitizing tumor cells to electrophilic anti-cancer drugs. In this study, we describe the interactions of four representative alkylating agents (AAs), melphalan, 4-hydroperoxy-cyclophosphamide (4HC), an an activated form of cyclophosphamide, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and cisplatin, with GSH and GST in the human breast cancer cell line MCF-7. Depletion of cellular GSH pools by approximately 80% by treatment of the cells with the GSH synthesis inhibitor buthionine sulfoximine (BSO) sensitized the tumor cells to each AA to a different extent, with dose-modifying factors of 2.39, 2.21, 1.64, and 1.27 observed for melphalan, 4HC, cisplatin, and BCNU, respectively. Treatment of the cells with the GST inhibitor ethacrynic acid (EA) failed to show any significant effects on the cytotoxicity of these AAs. However, EA did potentiate the cytotoxicity of melphalan when given in combination with BSO, an effect that may be due to a more complete depletion of cellular GSH levels by the combined modulator treatment. Following a 1-hr exposure to cytotoxic-equivalent concentrations of these AAs, GSH levels decreased substantially in the case of 4HC and BCNU, but increased by 30-50% in the case of cisplatin and melphalan. BSO pretreatment largely blocked this effect of cisplatin and melphalan on cellular GSH, while it further enhanced the GSH-depleting activity of both 4HC and BCNU. On the basis of these results, it is concluded that (a) GSH affects the cytotoxicity of different AAs to different extents, (b) basal GST expression in MCF-7 cells does not play a major role in AA metabolism, (c) EA can potentiate the enhancing effect of BSO on melphalan cytotoxicity in MCF-7 cells, and (d) depletion of cellular GSH by pretreatment with BCNU or cyclophosphamide may correspond to a useful strategy for enhancing the anti-tumor activity of other AAs given in a sequential combination.  相似文献   

19.
Age-related changes in the capacity, rate, and modulation of dopamine (DA) uptake within the striatum and the nucleus accumbens core of Fischer 344 rats were investigated using in vivo electrochemical recordings coupled with local drug application techniques. Equimolar amounts of DA were pressure ejected into the striatum and the nucleus accumbens of 6-, 12-, 18-, and 24-month old rats. The DA ejections produced larger DA signal amplitudes in the older rats, suggesting age-related differences in the capacity to clear extracellular DA. Within the striatum, the capacity and rate of DA uptake were reduced by 50% in the aged groups (18 and 24 months) compared with the younger rats (6 and 12 months). In the nucleus accumbens, significant reductions in DA uptake capacity and rate were observed in the 24-month group. In both brain regions and in all age groups studied, the rate of DA uptake was found to be concentration-dependent until a maximal rate was reached. The maximum rate of DA transport was significantly reduced in both the striatum and the nucleus accumbens of aged rats (18 and 24 months versus 6 and 12 months). The ability of nomifensine, an inhibitor of the DA transporter, to modulate DA signal amplitudes in the striatum and the nucleus accumbens was also decreased with age (24 months versus 6 months). Taken together, these findings demonstrate substantial age-related deficits in DA uptake processes within the striatum and the nucleus accumbens, consistent with the hypothesis that DA uptake may be slowed in aged animals to compensate for reductions in DA release.  相似文献   

20.
Overflow of the neurotransmitter dopamine (DA) in striatum is implicated in the neurodegenerative processes in ischemia, hypoxia and local exposure to high concentrations of excitatory amino acids. However, how DA causes neurotoxicity is not understood. We report that intrastriatal injection of DA (0.5-1 micromol/microl) in Wistar rats produces a robust increase in apoptotic cell death as determined by both a terminal deoxynucleotidyl transferase catalyzed dUTP-biotin nick labeling (TUNEL) and Klenow polymerase catalyzed [32P]dCTP labeled DNA ladder. Cells in which apoptosis was induced by DA are characterized by condensed chromatin, DNA fragmentation, shrinkage and irregular shapes. The apoptotic cell death induced by DA is not due to the effect of hyperosmolar solution since intrastriatal injection of identical concentrations of NaCl on opposite sides of the same rat brains shows little TUNEL-positive labeling. The number of apoptotic cells is proportional to the amount of DA and length of exposure period. With DA concentrations from 0 to 1 micromol/microl, the maximal toxic effect appears at a concentration of 1 micromol/microl after 24 h exposure. Demonstration of DA-induced apoptosis in vivo may provide a potential molecular mechanism for DA neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号