首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过热处理、拉伸性能测试、金相及电镜观察分析,研究了1420Al-Li合金冷轧薄板的各向异性。结果表明,该合金在力学性能及拉伸断裂特征方面均具有明显的各向异性。经过不同的热处理,合金的各向异性程度不同:固溶水冷样比空冷样的最大强度高,各向异性程度也较明显;空冷样σb各向异性程度随时效时间延长稍有增加。合金呈现明显的各向异性是由于其较高程度的轧制变形组织和时效析出相δ′等因素综合作用的结果。  相似文献   

2.
热处理制度对6013和6061合金拉伸性能的影响   总被引:2,自引:0,他引:2  
研究了自然时效(T4)、人工时效(T6)及室温停放对6013和6061合金常温拉伸性能的影响。结果表明:6013合金具有快速时效特性;经热处理后,6013合金的拉伸强度高于6061合金的且两者延伸率均大于10%。研究还表明:6013和6061合金常温拉伸性能的纵、横向差别很小,说明该合金拉伸性能各向异性不明显。文中还就不同热处理制度影响两种合金拉伸性能的原因进行了分析。  相似文献   

3.
热处理对铸轧— 冷轧铝箔各向异性的影响   总被引:2,自引:1,他引:1  
测定了铸轧冷轧铝箔及其退火后沿箔材不同方向的拉伸力学性能。结果表明,冷轧及低温退火后铝箔的力学性能均无明显的各向异性,低温退火时,抗拉强度和伸长率变化很小,当退火温度达到280℃时,随温度的升高,抗拉强度和伸长率显著变化,各向异性增大。在280~320℃之间退火,材料既可不同程度地软化、又能减小各向异性。  相似文献   

4.
7475铝合金断裂韧性KIC的各向异性   总被引:2,自引:0,他引:2  
采用标准紧凑拉伸试样测定了7475铝合金T-L和L-T向的平面应变断裂韧性KIC值。利用扫描电镜分析了断口形貌,对7475合金KIC各向异性的程度和机理进行了研究。结果表明:7475合金的断裂韧性具有明显的各向异性,T-L向的KIC约比L-T向低10MPa·m1/2或25%左右。同一取向上,KIC的大小与时效制度及加工工艺有关。  相似文献   

5.
1420铝锂合金的各向异性   总被引:5,自引:1,他引:5  
以1420铝锂合金为对象,研究了轧板的各向异性在时效过程中的演化,并探讨了δ′相强化的各向异性机制。研究结果表明:随着时效的进行,合金的各向异性逐渐增强,合金的拉伸断裂特征也出现各向异性;且随着时效的进行,合金的断裂方式由沿晶分层断裂向沿亚晶分层断裂转变。可以认为,δ′相是通过共面滑移来软化滑移面、减少滑移系数目,从而增强合金的各向异性。  相似文献   

6.
针对电子束快速成形(EBRM)钛合金的组织特点,采用OM、SEM、XRD和TEM等实验手段,分析了EBRM制备TC4合金的微观组织和织构对其拉伸性能的影响规律。结果表明:TC4合金存在着平行于沉积方向的β柱状晶,且柱状晶的宽度随着沉积高度的增加,初始时迅速增加,之后增加的趋势变缓。由于沉积过程中循环的热作用,柱状晶内α片尺寸随着沉积高度的增加而减小。合金存在典型的转变α相织构。微观结构的梯度变化也导致了合金在不同位置的拉伸性能差异。随着X方向拉伸试样位置的升高,合金的屈服强度没有明显的变化,但抗拉强度有所提升;合金的塑性呈现上升的趋势。在合金底部,距离基板10和20 mm处的拉伸试样具有相近的加工硬化指数,低于合金中间的拉伸试样,而合金顶端拉伸试样的加工硬化指数较高。此外,合金还具有拉伸性能的各向异性,45°方向拉伸试样的强度高于X方向和Z方向的拉伸试样,同时Z方向拉伸试样的强度最低,这种强度各向异性主要归因于合金的转变α相织构。  相似文献   

7.
研究β锻造Ti-6Al-4V(Ti64)合金拉伸性能和断裂韧性的各向异性。对饼材不同取向的显微组织和晶体学织构进行分析,同时研究取样方向对拉伸性能、断裂韧性的影响。结果表明,Ti64饼材原始β晶粒呈扁平状。室温下合金主要由α相构成,β锻造后β→α相变产生的多个α相变体导致α相织构强度较低。力学性能各向异性的主要影响因素为原始β晶粒形貌以及与α织构相关的滑移。采用J积分阻力曲线法测定合金的起裂韧性,并将起裂韧性KJIC分为内在韧性和外在韧性。内在断裂韧性各向异性主要与原始β晶粒对裂纹尖端塑性区范围的影响相关;外在断裂韧性主要与α片层与集束对裂纹曲折程度的影响相关。  相似文献   

8.
分别使用铸造试样及两种不同锻造程度的锻件试样,对高合金冷作模具钢D2在气淬和回火过程中的畸变行为进行了研究。试验结果表明,铸造试样的畸变是等向性的,而锻造试样的畸变显然呈各向异性。各向异性畸变程度随奥氏体化温度的升高而增加。在本试验范围内,不同的锻造程度对各向异性的畸变程度影响不大。回火后各向异性畸变程度有所降低。使用测膨胀方法及金相检验探讨了产生各向异性畸变的可能机制。  相似文献   

9.
对TC4钛合金分别进行了920℃、940℃、960℃、980℃保温1 h空冷的退火,随后进行了金相检验、拉伸试验和拉伸断口分析,以揭示退火温度对合金显微组织和拉伸性能的影响。结果表明:不同温度退火的TC4合金组织主要由初生α相和次生α相组成,随着退火温度的升高,初生α相含量减少;随着退火温度的升高,合金的强度升高,塑性降低,980℃退火的合金抗拉强度和屈服强度最高,为973 MPa和961 MPa,而塑性最差,断后伸长率为2%,断面收缩率为8%;在920℃和940℃退火的合金拉伸断口有大量韧窝,具有韧性断裂特征,960℃和980℃退火的合金拉伸断口韧窝数量明显减少,出现明显的撕裂棱和解离台阶,具有韧-脆性断裂特征。  相似文献   

10.
退火对铸轧—冷轧铝箔各向异性的影响   总被引:2,自引:2,他引:0  
采用拉伸试验机测定了铸轧一冷轧铝箔及其退火后沿箔材不同方向的拉伸力学性能。结果表明,冷轧及低温退火后铝箔的力学性能均无明显的各向异性,低温退火时,抗拉强度和延伸率变化很小。当退火温度达到280℃时,随温度的升高,抗拉强度和延伸率显著变化,各向异性增长。在280~320℃之间退火,材料既可不同程度地软化,又能减小各向异性。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号