首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laparoscopic visualization techniques have improved dramatically over the last 5 years and have led to reassessment of the laparoscope for use in the staging of intraabdominal malignancy. One hundred sixty-two consecutive cases undergoing preoperative staging laparoscopy from January 1988 to December 1993 were reviewed in order to determine the value of laparoscopy as a staging tool. Indications for staging laparoscopy were predominantly hepatopancreaticobiliary (85%); however, other primaries such as stomach and colon were included. In 36% of cases information found at laparoscopy precluded resection and prevented unnecessary laparotomy. Additional information that was felt to be helpful in planning resection was found in 30% of cases. In 12% of cases unresectability was found only at the time of laparotomy and was missed by staging laparoscopy. We conclude that laparoscopy is a useful preoperative staging tool and can help avoid unnecessary laparotomy for intraabdominal malignancy in one-third of patients.  相似文献   

2.
To compare roles of specific enzymes in supply of NADPH for cellular biosynthesis, collections of yeast mutants were constructed by gene disruptions and matings. These mutants include haploid strains containing all possible combinations of deletions in yeast genes encoding three differentially compartmentalized isozymes of NADP+-specific isocitrate dehydrogenase and in the gene encoding glucose-6-phosphate dehydrogenase (Zwf1p). Growth phenotype analyses of the mutants indicate that either cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p) or the hexose monophosphate shunt is essential for growth with fatty acids as carbon sources and for sporulation of diploid strains, a condition associated with high levels of fatty acid synthesis. No new biosynthetic roles were identified for mitochondrial (Idp1p) or peroxisomal (Idp3p) NADP+-specific isocitrate dehydrogenase isozymes. These and other results suggest that several major presumed sources of biosynthetic reducing equivalents are non-essential in yeast cells grown under many cultivation conditions. To develop an in vivo system for analysis of metabolic function, mammalian mitochondrial and cytosolic isozymes of NADP+-specific isocitrate dehydrogenase were expressed in yeast using promoters from the cognate yeast genes. The mammalian mitochondrial isozyme was found to be imported efficiently into yeast mitochondria when fused to the Idp1p targeting sequence and to substitute functionally for Idp1p for production of alpha-ketoglutarate. The mammalian cytosolic isozyme was found to partition between cytosolic and organellar compartments and to replace functionally Idp2p for production of alpha-ketoglutarate or for growth on fatty acids in a mutant lacking Zwf1p. The mammalian cytosolic isozyme also functionally substitutes for Idp3p allowing growth on petroselinic acid as a carbon source, suggesting partial localization to peroxisomes and provision of NADPH for beta-oxidation of that fatty acid.  相似文献   

3.
Polyhistidine tags were added to the carboxyl termini of the two homologous subunits of yeast NAD+-specific isocitrate dehydrogenase (IDH). The tag in either the IDH1 or IDH2 subunit permits one-step affinity purification from yeast cellular extracts of catalytically active and allosterically responsive holoenzyme. This expression system was used to investigate subunit-specific contributions of residues with putative functions in adenine nucleotide binding. The primary effect of simultaneous replacement of the adjacent Asp-279 and Ile-280 residues in IDH1 with alanines is a dramatic loss of activation by AMP. In contrast, alanine replacement of the homologous Asp-286 and Ile-287 residues in IDH2 does not alter the allosteric response to AMP, but produces a 160-fold reduction in Vmax due to a 70-fold increase in the S0.5 value for NAD+. These results suggest that the targeted aspartate/isoleucine residues may contribute to regulator binding in IDH1 and to cofactor binding in IDH2, i.e. that these homologous residues are located in regions that have evolved for binding the adenine nucleotide components of different ligands. In other mutant enzymes, an alanine replacement of Asp-191 in IDH1 eliminates measurable catalytic activity, and a similar substitution of the homologous Asp-197 in IDH2 produces pleiotropic catalytic effects. A model is presented for the primary function of IDH2 in catalysis and of IDH1 in regulation, with crucial roles for these single aspartate residues in the communication and functional interdependence of the two subunits.  相似文献   

4.
5.
6.
For long time, it has been believed that the yeast mitochondrial (mt) genome lacks NADH dehydrogenase subunit genes which are designated ND genes. However, our complete mtDNA sequencing of yeast Hansenula wingei led us to the first finding of seven mitochondrial ND genes. We investigated the distribution of ND genes in mtDNAs of other yeasts including Pichia membranaefaciens, Yarrowia lypolitica, Candida maltosa, Saccharomyces kluyveri and Saccharomyces exiguus. By Southern hybridization with probes of H. wingei's ND1, 2 and 5 genes, we detected positive signals on mtDNAs in P. membranaefaciens, Y. lypolitica, and C. maltosa. To confirm this, we cloned and sequenced DNA fragment of ND5 gene in P. membranaefaciens. We have discussed the sequence homology and genome structure.  相似文献   

7.
8.
We describe a yeast trihybrid system that facilitates rapid screening of cDNA libraries. Novel yeast vectors were developed that direct integration of cDNA encoding the bait and third protein component into the yeast chromosome. A recombinant yeast strain is thus generated (screening strain) and is available for library transformation. Transformation with the library DNA is a single, efficient transformation event, allowing the cDNA library to be represented in one step. Recovery of the library plasmid from the yeast is also simplified, since it is the only episomal plasmid. Assay of trihybrid interaction and identification of positive clones is facilitated by regulating expression of the third protein component using the yeast MET3 promoter, which is repressed in the presence of exogenous methionine. Trihybrid interactions are detected only on media lacking methionine. This trihybrid system uses the standard E. coli LacZ and yeast HIS3 reporter genes and is compatible with most available Gal4 activation domain cDNA libraries. We describe the successful application of this yeast trihybrid system to the study of phosphoprotein interactions involved in T-cell signaling.  相似文献   

9.
Translation of mitochondrial mRNAs in Saccharomyces cerevisiae depends on mRNA-specific translational activators that recognize the 5' untranslated leaders (5'-UTLs) of their target mRNAs. We have identified mutations in two new nuclear genes that suppress translation defects due to certain alterations in the 5'-UTLs of both the COX2 and COX3 mRNAs, indicating a general function in translational activation. One gene, MRP21, encodes a protein with a domain related to the bacterial ribosomal protein S21 and to unidentified proteins of several animals. The other gene, MRP51, encodes a novel protein whose only known homolog is encoded by an unidentified gene in S. kluyveri. Deletion of either MRP21 or MRP51 completely blocked mitochondrial gene expression. Submitochondrial fractionation showed that both Mrp21p and Mrp51p cosediment with the mitochondrial ribosomal small subunit. The suppressor mutations are missense substitutions, and those affecting Mrp21p alter the region homologous to E. coli S21, which is known to interact with mRNAs. Interactions of the suppressor mutations with leaky mitochondrial initiation codon mutations strongly suggest that the suppressors do not generally increase translational efficiency, since some alleles that strongly suppress 5'-UTL mutations fail to suppress initiation codon mutations. We propose that mitochondrial ribosomes themselves recognize a common feature of mRNA 5'-UTLs which, in conjunction with mRNA-specific translational activation, is required for organellar translation initiation.  相似文献   

10.
11.
Two different yeast genes were identified that when overexpressed suppressed the low iron growth defect of a mutation in the endoplasmic reticulum iron binding enzyme methyl sterol oxidase. These genes were determined to be novel and highly related. The deduced amino acid sequences indicated that both were membrane proteins having two identical histidine-rich motifs. The predicted proteins, while not ABC transporters, are homologous to a widely distributed family of transition metal transporters present in all kingdoms. Subcellular fractionation and fluorescence microscopy localized these gene products to mitochondria. Based on this result we term these genes Mitochondrial Fe Transporters (MFT). Cells with disruptions in both genes show a growth defect on low iron medium, suggesting that these genes have redundant function and can affect cytosolic iron levels. Measurement of mitochondrial iron in cells grown in iron-rich medium overexpressing MFT1 or MFT2 show a 2-5-fold increase in iron compared with mitochondria from control cells. These results suggest that the mitochondria may act as a reservoir for iron that can be mobilized and used for cytosolic purposes.  相似文献   

12.
The full-length DNAs for two Saccharomyces cerevisiae aldehyde dehydrogenase (ALDH) genes were cloned and expressed in Escherichia coli. A 2,744-bp DNA fragment contained an open reading frame encoding cytosolic ALDH1, with 500 amino acids, which was located on chromosome XVI. A 2,661-bp DNA fragment contained an open reading frame encoding mitochondrial ALDH5, with 519 amino acids, of which the N-terminal 23 amino acids were identified as the putative leader sequence. The ALDH5 gene was located on chromosome V. The commercial ALDH (designated ALDH2) was partially sequenced and appears to be a mitochondrial enzyme encoded by a gene located on chromosome XV. The recombinant ALDH1 enzyme was found to be essentially NADP dependent, while the ALDH5 enzyme could utilize either NADP or NAD as a cofactor. The activity of ALDH1 was stimulated two- to fourfold by divalent cations but was unaffected by K+ ions. In contrast, the activity of ALDH5 increased in the presence of K+ ions: 15-fold with NADP and 40-fold with NAD, respectively. Activity staining of isoelectric focusing gels showed that cytosolic ALDH1 contributed 30 to 70% of the overall activity, depending on the cofactor used, while mitochondrial ALDH2 contributed the rest. Neither ALDH5 nor the other ALDH-like proteins identified from the genomic sequence contributed to the in vitro oxidation of acetaldehyde. To evaluate the physiological roles of these three ALDH isoenzymes, the genes encoding cytosolic ALDH1 and mitochondrial ALDH2 and ALDH5 were disrupted in the genome of strain TWY397 separately or simultaneously. The growth of single-disruption delta ald1 and delta ald2 strains on ethanol was marginally slower than that of the parent strain. The delta ald1 delta ald2 double-disruption strain failed to grow on glucose alone, but growth was restored by the addition of acetate, indicating that both ALDHs might catalyze the oxidation of acetaldehyde produced during fermentation. The double-disruption strain grew very slowly on ethanol. The role of mitochondrial ALDH5 in acetaldehyde metabolism has not been defined but appears to be unimportant.  相似文献   

13.
14.
15.
A 6.5 kb cucumber genomic DNA fragment containing the icl gene was introduced into Nicotiana plumbaginifolia and shown to direct isocitrate lyase (ICL) mRNA synthesis in transgenic seedlings upon germination, in a temporally regulated manner. Two putative icl promoter fragments, of 2900 and 572 bp, were subsequently linked to the GUS reporter gene and introduced into N. plumbaginifolia. Both constructs directed GUS expression after transgenic seed germination, and although the 572 bp fragment gave only 1% of the activity of the 2900 bp fragment, it directed expression in the same cotyledon-specific and temporally regulated pattern. Seedlings were transferred to darkness after 18 days growth in the light, to induce a starvation response. The 2900 bp construct was activated by starvation and repressed by exogenous sucrose, whereas the 572 bp construct was not starvation-responsive. To localize the region of the 2900 bp promoter fragment which is responsible for regulation by sucrose, further deletions were made, linked to GUS, and assayed in a cucumber protoplast transient assay system. Constructs with promoters of 2900, 2142 and 1663 bp were activated by starvation and repressed by sucrose, but promoters of 1142 and 572 bp showed no such response. We conclude that the icl gene promoter contains at least two distinct cis-acting elements, one required for the response to sucrose and the other which participates in expression upon seed germination.  相似文献   

16.
The goal of the fungal mitochondrial genome project (FMGP) is to sequence complete mitochondrial genomes for a representative sample of the major fungal lineages; to analyze the genome structure, gene content, and conserved sequence elements of these sequences; and to study the evolution of gene expression in fungal mitochondria. By using our new sequence data for evolutionary studies, we were able to construct phylogenetic trees that provide further solid evidence that animals and fungi share a common ancestor to the exclusion of chlorophytes and protists. With a database comprising multiple mitochondrial gene sequences, the level of support for our mitochondrial phylogenies is unprecedented, in comparison to trees inferred with nuclear ribosomal RNA sequences. We also found several new molecular features in the mitochondrial genomes of lower fungi, including: (1) tRNA editing, which is the same type as that found in the mitochondria of the amoeboid protozoan Acanthamoeba castellanii; (2) two novel types of putative mobile DNA elements, one encoding a site-specific endonuclease that confers mobility on the element, and the other constituting a class of highly compact, structured elements; and (3) a large number of introns, which provide insights into intron origins and evolution. Here, we present an overview of these results, and discuss examples of the diversity of structures found in the fungal mitochondrial genome.  相似文献   

17.
In Saccharomyces cerevisiae, the NDI1 gene encodes a mitochondrial NADH dehydrogenase, the catalytic side of which projects to the matrix side of the inner mitochondrial membrane. In addition to this NADH dehydrogenase, S. cerevisiae exhibits another mitochondrial NADH-dehydrogenase activity, which oxidizes NADH at the cytosolic side of the inner membrane. To investigate whether open reading frames YMR145c/NDE1 and YDL 085w/NDE2, which exhibit sequence similarity with NDI1, encode the latter enzyme, NADH-dependent mitochondrial respiration was assayed in wild-type S. cerevisiae and nde deletion mutants. Mitochondria were isolated from aerobic, glucose-limited chemostat cultures grown at a dilution rate (D) of 0. 10 h-1, in which reoxidation of cytosolic NADH by wild-type cells occurred exclusively by respiration. Compared with the wild type, rates of mitochondrial NADH oxidation were about 3-fold reduced in an nde1Delta mutant and unaffected in an nde2Delta mutant. NADH-dependent mitochondrial respiration was completely abolished in an nde1Delta nde2Delta double mutant. Mitochondrial respiration of substrates other than NADH was not affected in nde mutants. In shake flasks, an nde1Delta nde2Delta mutant exhibited reduced specific growth rates on ethanol and galactose but not on glucose. Glucose metabolism in aerobic, glucose-limited chemostat cultures (D = 0.10 h-1) of an nde1Delta nde2Delta mutant was essentially respiratory. Apparently, under these conditions alternative systems for reoxidation of cytosolic NADH could replace the role of Nde1p and Nde2p in S. cerevisiae.  相似文献   

18.
A large number of observations suggest that, during Drosophila development there are close functional interactions between the activity of Notch receptor and that of a signaling molecule encoded by wingless gene. In this essay, I summarize these interactions and discuss the possibility that Wingless acts as a ligand for Notch as part of a switch that is iteratively involved in the assignation of cell fates during development.  相似文献   

19.
20.
The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex assembly. To understand the influence of Lon's ATPase and protease activities on these functions, we examined several Lon mutants for their ability to complement defects of Lon-deleted yeast cells. We also developed a rapid procedure for purifying yeast Lon to homogeneity to study the enzyme's activities and oligomeric state. A point mutation in either the ATPase or the protease site strongly inhibited the corresponding activity of the pure protein but did not alter the protein's oligomerization; when expressed at normal low levels neither of these mutant enzymes supported respiration-dependent growth of Lon-deleted cells. When the ATPase- or the protease-containing regions of Lon were expressed as separate truncated proteins, neither could support respiration-dependent growth of Lon-deleted cells; however, coexpression of these two separated regions sustained wild-type growth. These results suggest that yeast Lon contains two catalytic domains that can interact with one another even as separate proteins, and that both are essential for the different functions of Lon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号