首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal and recovery of phosphorus from sewage in form of MAP (magnesium ammonium phosphate) have attracted attention from the viewpoint of eutrophication prevention and phosphorus resource recovery as well as scaling prevention inside digestion tanks. In this work, phosphorus recovery demonstration tests were conducted in a 50 m3/d facility having a complete mixing type reactor and a liquid cyclone. Digested sludge, having 690 mg/L T-P and 268 mg/L PO4-P, was used as test material. The T-P and PO4-P of treated sludge were 464 mg/L and 20 mg/L achieving a T-P recovery efficiency of 33% and a PO4-P crystallization ratio of 93%. The reacted phosphorus did not become fine crystals and the recovered MAP particles were found to be valuable as a fertilizer. A case study in applying this phosphorus recovery process for treatment of sludge from an anaerobic-aerobic process of a 21,000 m3/d sewage system, showed that 30% of phosphorus concentration can be reduced in the final effluent, recovering 315 kg/d as MAP.  相似文献   

2.
The adverse effect of nitrate on the phosphate release rate in the anaerobic phase was observed and was hardly explainable with conventional EBPR process models. Four possible mechanisms were proposed including substrate competition, reduced fermentation, parallel reaction and sequential reaction. Batch experiments were designed and conducted to identify the dominant mechanism. Results showed that the sequential reaction was the only possible mechanism where only denitrification occurred if any nitrate existed in the anaerobic phase. Then the phosphate release following after the nitrate was completely removed. Nitrate inhibition effect was added into the PHA storage rate to incorporate the sequential reaction in the conventional ASM3 plus EAWAG bio-P module (ASM3 + P). Nitrate inhibition coefficient, K(I,NO,PAO) was found to be as low as 0.05 mg/L. This correlated well with experimental observation where no also meant that the anaerobic compartment of a continuous flow reactor could be seriously affected by the residual nitrate contained in the sludge recycle flow. This phenomenon caused overestimation of the phosphate uptake rate and consequently underestimation of PO4(3-) -P concentration. This problem was resolved by incorporation of a nitrate inhibition term in the ASM3 + P for more accurate simulation of the EBPR process.  相似文献   

3.
Two high-rate, anaerobic/aerobic units were used to treat the sewage of the Institut Agronomique st Vétérinaire Hassan II (Morocco) campus in a 1,100 m2-plant designed for 1,500 e.p. and receiving 63 m3 per day. The anaerobic pre-treatment consisted of a two-step up-flow anaerobic reactor (TSUAR) comprising two reactors and one external settler all in series. The aerobic line, or post-treatment, consisted of a high-rate algal pond (HRAP) and one maturation pond in series. The system totalized a hydraulic retention time (HRT) of 9 days. A gravel filter (GF) was constructed behind the TSUAR to trap low-density particles. The TSUAR removed 80% of COD and 90% of SS within 48 h. Solids retention time in the reactors averaged 32 d with a specific sludge production of 0.28 g SS g(-1) COD removed. Almost 93% of the sludge evacuated from the settler was stabilized. Specific biogas production from both reactors was 0.25m3 kg(-1) COD removed. Used in this configuration, the HRAP lost its BOD removal activity and increased its nutrients and pathogens removal capabilities (tertiary treatment). Results showed that 85% of total nitrogen and 48% of total phosphorus were removed by the HRAP. Land area requirement of this combination was less than 1 m2 per capita and filtered final effluent was of excellent quality (COD, 82 mg/l; TKN, 8.3 mg/l; total P, 2.7 mg/l, faecal coliforms, 2.4 10(3)/100 ml and zero helminths eggs).  相似文献   

4.
This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700 microm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.  相似文献   

5.
Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors(SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at different pH values were compared, the probable reasons for different performances of phosphorus removal were examined, and system operations in a typical cycle were investigated. The results show that the phosphorus removal rate was positively correlated with pH values in a range of 6.5-8.5. When the pH value was 8.0, the anaerobic phosphorus release rate and anoxic phosphorus uptake rate of the activated sludge were 20.95 mg/(g?h) and 23.29 mg/(g?h), respectively; the mass fraction of poly-b-hydroxybutyrate(PHB) increased to 62.87 mg/g under anaerobic conditions; the mass fraction of polyphosphate was 92.67 mg/g under anoxic conditions; and the effluent concentration of total phosphorus(TP) was 1.47 mg/L. With the increase of pH, the mass fraction of acetic acid and PHB also increased, and the absorption rate of acetic acid was equal to the disintegration rate of polyphosphate. When the pH value was above 8.0, biological phosphorus removal was achieved by chemical phosphorus precipitation, and the phosphorus removal rate decreased.  相似文献   

6.
The paper describes and analyses the performance of anoxic selectors in upgrading activated sludge process in a municipal wastewater treatment plant under tropical climate, where poor sludge settleability is a problem due to elevated temperature. Site monitoring and laboratory experiment were conducted to study the denitrification, sludge settleability, kinetics, mass balance, pH and alkalinity variation in the system. The sludge settleability measured in Sludge Volume Index (SVI) was observed to improve with the increasing degree of denitrification in the anoxic selector. Under well-developed stable state, an average SVI value of 136 ml/g was achieved, which was significantly lower than the value of 250 ml/g before the application of anoxic selector. The specific reaction rates for denitrification and nitrification at 30 degrees C were 0.06 mg NO3-N/mg MLSS day and 0.08 mg NH4-N/mg MLSS day, respectively. The overall efficiencies of nitrification and denitrification were 86 percent and 55.4 percent, respectively, with an alkalinity recovery ratio of 15.4 percent. 32 percent of total COD removed was used up as electron donor in the denitrification process. However, due to absence of the internal Mixed Liquor Recirculation (MLR), a higher degree of denitrification occurred in the secondary sedimentation tank than in the anoxic zone. Issues for further studies are also discussed.  相似文献   

7.
菌藻混合固定化及其对污水的净化实验   总被引:1,自引:0,他引:1  
对菌藻共固定化系统进行研究,初步确定菌藻共固定化中较佳的污泥包埋量。在同等条件下,固定化菌藻对氮磷的去除效果优于固定化细菌和固定化藻类的去除效果。对氨氮和磷酸盐磷去除能力的48 h实验结果表明,按去除率的大小排列为:固定化菌藻固定化小球藻固定化细菌,固定化菌藻对NH4+-N和PO43--P的去除率分别达到97.09%和88.69%,可见把细菌和藻类共同包埋于同一载体内,在同时去除污水中的氮磷和有机物方面有着更大的优势。  相似文献   

8.
The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(?) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(?) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.  相似文献   

9.
Moving bed bioreactors (MBBR) and fixed bed bioreactors (FBBR) were compared for biological phosphorus removal and denitrification. The sorption denitrification P-elimination (S-DN-P) process was selected for this study. Results indicated that all nutrients were removed by the FBBR process compared with the MBBR process: 19.8% (total COD), 35.5% (filtered COD), 27.6% (BOD(5)), 62.2% (acetate), 78.5% (PO(4)-P), and 54.2% (NO(3)-N) in MBBR; 49.7% (total COD), 54.0% (filtered COD), 63.2% (BOD(5)), 99.6% (acetate), 98.6% (PO(4)-P), and 75.9% (NO(3)-N) in FBBR. The phosphate uptake and NO(3)-N decomposition in the FBBR process during the denitrification phase were much higher than for the MBBR process despite being of shorter duration. Results obtained from this study are helpful in elucidating the practical implications of using MBBR and FBBR for the removal of bio-P and denitrification from wastewater.  相似文献   

10.
为快速启动好氧颗粒污泥反应器,在SBR反应器中同时接种硝化污泥和厌氧颗粒污泥,控制反应条件,温度23~25℃,pH值7.5~8.5,DO质量浓度1.5 mg/L左右,15 d即完成反应器快速启动。形成的好氧颗粒污泥粒径1.5~2.5 mm,SVI值54 mL/g。颗粒污泥结构紧密,沉降性能良好。反应器连续运行40多天,改变进水COD及NH4+-N浓度,COD和NH4+-N去除率均能稳定在80%以上,反应器内发生了同步硝化反硝化过程。  相似文献   

11.
This study investigates variations of phosphorus and polyhydroxyalkanoates (PHAs) in a combined activated sludge - biofilm process, operating under various sludge retention times (5, 10 and 15 days) and different dissolved oxygen conditions (0.1, 0.5, 1.0 and 2.0 mg/l in aerobic stage). Experimental results indicate that phosphorus uptake closely corresponds to utilization of PHAs during anoxic and aerobic stages. Moreover, the sludge in the anoxic stage exhibits a higher PHAs utilization efficiency with respect to phosphorus uptake than sludge in the aerobic stage, when it is under low COD-SS loading conditions. The values of rP/PHA, representing sludge capacity on phosphorus uptake, range from 0.1–1.0 mg P/mg PHAs. In addition, analyzing the distribution of 3-hydroxybutyrate (3HB), 3-hydroxy-2-methylbutyrate (3H2MB), 3hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) reveals that 3HB and 3HV are the major components of PHAs. The values of 3HB/PHAs and 3HV/PHAs vary with COD-SS loading of the process. When F/M ratio increases, 3HV/PHAs value increases and 3HB/PHAs value decreases simultaneously. This phenomenon implies that more bacteria accumulated 3HV as storage matter under high COD-SS loading conditions. The kind of bacteria population shift would intensify the competition of “G bacteria” with polyphosphate accumulating organisms, possibly causing process deterioration during phosphorus removal.  相似文献   

12.
This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery.  相似文献   

13.
Partial nitrification and biological phosphorus removal appear to hold promise of a cost-effective and sustainable biological nutrient removal process. Pilot sequencing batch reactors (SBRs) were operated under anaerobic/aerobic configuration for 8 months. It was found that biological phosphorus removal can be achieved in an SBR system, along with the partial nitrification process. Sufficient volatile fatty acids supply was the key for enhanced biological phosphorus removal. This experiment demonstrated that partial nitrification can be achieved even at low temperature with high dissolved oxygen (>3 mg/L) concentration. Shorter solid retention time (SRT) for nitrite oxidizing bacteria (NOB) than for ammonia oxidizing bacteria due to the nitrite substrate limitation at the beginning of the aeration cycle was the reason that caused NOB wash-out. Controlling SRT should be the strategy for an SBR operated in cold climate to achieve partial nitrification. It was also found that the aerobic phosphorus accumulating organisms' P-uptake was more sensitive to nitrite inhibition than the process of anaerobic P-release.  相似文献   

14.
In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m(3) was operated at ambient temperature (16-29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.  相似文献   

15.
污泥碱解发酵液用于生活污水脱氮 除磷的效果研究   总被引:2,自引:0,他引:2  
为了减轻水体富营养化程度,提高污水的脱氮除磷效果,并解决污泥减量化和资源化问题,本研究将碱预处理的污泥进行厌氧发酵产酸,并将发酵液作为污水脱氮除磷的外加碳源。研究结果表明:投加污泥发酵液后,出水氨氮浓度为0.3~0.5 mg/L,总磷浓度为0.5 mg/L,与未投加污泥发酵液相比分别降低了1.7~2.3 mg/L和3~4 mg/L。  相似文献   

16.
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.  相似文献   

17.
CASS工艺生物脱氮除磷效果分析   总被引:2,自引:0,他引:2  
对CASS工艺脱氮除磷效果进行了试验研究,重点研究了温度和回流比对脱氮效果的影响,曝气量对除磷效果的影响。研究结果表明,水温在30℃时系统脱氮效果最好,此时NH3-N去除率在80%左右,TN去除率在70%左右;污泥回流比为25%、50%、100%和200%时,TN去除率分别为50%、58%、62%和70%,增加回流比可以提高脱氮效率;好氧区DO维持在2mg/L和4 mg/L时,TP去除率分别为82%和37%。  相似文献   

18.
The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using a laboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be one of the important parameters for success of the anaerobic nitrogen removal process. The results from organic synthetic wastewater show that if the Anammox organism were not great enough in the startup of the process, denitritation and anaerobic ammonification would be a process prior to the Anammox reaction. The anaerobic ammonium removal from the piggery waste was performed successfully, probably due to the Anammox intermediates contained in the substrate. This reactor shows a complex performance including the Anammox reaction and HAP crystallization, as well as having partial denitritation occurring simultaneously. From the activity test, the maximum specific N conversion rate was 0.1 g NH4-N/g VSS/day (0.77 g T-N/g VSS/day), indicating that potential denitritation is quite high. The NO2-N/NH4-N ratio to Anammox is 1.17. The colour of the biomass treating the piggery waste changed from black to dark red. It was also observed that the red-colored granular sludge had a diameter of 1-2 mm. The settleability assessment of the granular sludge revealed that the granular sludge had a good settleability even though it was worse than that of seed granular sludge.  相似文献   

19.
The rotating biological contactor (RBC) system was operationally modified with a sequencing batch reactor to achieve biological phosphorus removal from a weak domestic sewage along with nitrogen removal. This study utilized three RBC units, of which two units were the main units to remove phosphorus and NH4N and the third RBC unit was used as the storage of wastewater for its minimal effect to the PAO activities in the anaerobic stage during the operation. It was noticed that the biofilm thickness in RBC must be controlled to be less than 1.8 mm in order to achieve more than 70% of P removal with about 60% of N removal. With a settled sewage representing 200 mg/L of COD and 5 mg/L of P, the predicted P content in biofilm was more than 3% and the effluent P concentration was about 1 mg/L. The %P content in biofilm decreased with an increase of influent COD/TP ratios. The COD requirement for anaerobic P release was similar to reported values for the suspended growth system, however, the overall requirement increased with thicker biofilm.  相似文献   

20.
A continuous flow pilot plant with a mixed population of activated sludge was used to investigate the influence of temperatures between 5°C and 20°C on the efficiency of enhanced biological phosphorus removal (EBPR) and on the phosphorus release and uptake mechanisms. Bacterial strains, isolated at different temperatures, were tested for their ability to store polyphosphate. At temperatures of between 15°C and 20°C the uptake of phosphate in the aerobic reactor was correlated directly with the quantity of phosphate released in the anaerobic zone. Mainly aerobic microorganisms were isolated. In batch tests they showed comparatively high polyphosphate storing capacities. There was no indication that Acinetobacter sp. played a dominant role in the processes of EBPR. A drop in temperature to 10°C and then to 5°C had no significant influence on the efficiency of EBPR. In spite of a clearly reduced release of phosphate in the anaerobic zone, the bacterial uptake of phosphate reached unchanged high levels. Because of reduced nitrification at low temperatures, making the anoxic zone into an additional anaerobic zone, facultative anaerobic microorganisms accumulated in the microbial population. They showed the best abilities to store polyphosphate under these conditions, whereas aerobic bacteria lost their polyphosphate storing capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号