首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超细晶硬质合金显微组织参数与力学性能定量关系的研究   总被引:1,自引:0,他引:1  
对超细晶WC-Co硬质合金的复相显微组织进行了系统的定量化表征和分析,获得了WC晶粒尺寸d_(WC),Co相平均自由程L_(Co)和WC晶粒邻接度C_(WC-WC)等显微组织参数与力学性能的定量关系,模型预测结果与实验测定结果符合很好.结果表明,当C_(WC-WC)基本相同时,超细晶硬质合金的硬度分别与d_(WC)~(-1/2)和L_(Co)~(-1/2)成线性正比关系,断裂韧性K_(IC)分别与d_(WC)~(-1/2)和L_(Co)~(-1/2)成确定性函数关系.在Co含量一定、WC平均晶粒尺寸基本相同的情况下,随着C_(WC-WC)的增大,超细晶硬质合金的横向断裂强度降低,且当C_(WC-WC)>0.5时,硬质合金的强度随C_(WC-WC)增加显著下降.  相似文献   

2.
将不同含量的WB粉末添加到传统成分的WC-Co粉末中,利用低压烧结技术制备了系列含WB的WC-Co型硬质合金,并对其物相组成、组织结构和力学性能进行了系统表征分析。研究发现,在低压烧结过程中WB与Co发生反应,生成了具有超高硬度的WCoB相,由此降低了粘结相Co对WC晶粒的隔离,增加了WC晶粒间的接触度,引起合金韧性下降。添加WB制备的硬质合金材料其摩擦系数更低,随WB添加量的增加,硬度和耐磨性明显提高,当WB添加量为30%(质量分数)时,制备的硬质合金材料的硬度达到19 000 MPa,其磨损速率仅为传统WC-Co硬质合金1/10。然而,添加WB的WC-Co合金的断裂韧性约为传统WC-Co硬质合金的83%~91%。  相似文献   

3.
通过两种疲劳试验:旋转弯曲疲劳试验和3-或4-点弯曲疲劳试验测试细晶WC-Co硬质合金的裂纹生长行为和疲劳寿命。疲劳试验结果表明:所测试的大部分WC-Co硬质合金的疲劳寿命取决于裂纹生长周期。利用断裂力学基本方程推导出疲劳裂纹生长速率(da/dN)和最大应力强度因子(Kmax)的关系。根据此关系,获得材料的强度因子阈值(Kth)和疲劳断裂韧性值(Kfc)。基于修正的线性弹性断裂力学方程,对WC-Co硬质合金材料的疲劳寿命进行计算,疲劳寿命的计算结果与实验结果吻合较好。  相似文献   

4.
利用三点弯曲疲劳实验,研究了Cr3C2和VC添加对超粗晶硬质合金疲劳性能的影响规律和机理。超粗晶硬质合金的疲劳寿命随着循环载荷的增加呈指数型下降,随应力比的增加明显增加;少量Cr3C2的添加可有效提高超粗晶硬质合金的抗弯强度和抗疲劳性能,其原因是少量Cr3C2的添加可实现Cr原子对Co相的固溶强化、抑制fccCo向hcp-Co的相转变、使WC晶粒边角圆化缓解应力集中;而VC的添加则降低了合金的抗弯强度和疲劳断裂时的最大循环次数,是VC的添加易于在界面处形成脆性的层状组织(W,V)Cx降低界面结合强度、使WC晶粒边界呈锯齿状易于产生应力集中所致。  相似文献   

5.
欧朝霞 《硬质合金》2008,25(1):37-41
采用冲击弯曲试验研究了硬质合金的冲击疲劳性能。结果表明,当晶粒度一定时,硬质合金的冲击疲劳性能随着钴含量的增加而提高;当钴含量一定,WC晶粒度为1.2~3.2μm时,WC-Co硬质合金的冲击疲劳性能先是随着WC晶粒度的增粗而提高,当晶粒度增加到一定程度时,冲击疲劳性能出现下降。超细晶粒硬质合金的冲击疲劳性能明显高于一般WC-Co硬质合金。  相似文献   

6.
对WC粉体进行化学活化预处理,然后采用超声辅助化学镀法制备低钴含量WC-Co(≤1 mass%)复合粉体,采用放电等离子烧结(SPS)技术,制备了少粘结相WC-Co硬质合金材料。研究了化学活化预处理工艺对WC粉体表面化学镀Co的影响以及少量均匀包覆的Co对试样烧结致密化过程、显微组织结构及力学性能的影响。试验结果表明:化学活化预处理后的WC粉体出现了大量的层错、位错等缺陷,在缺陷周围产生点阵畸变和应力场,较大的表面能减小了金属与陶瓷界面接触角,提高了二者之间的润湿性,降低了化学镀过程的形核功,实现化学镀钴过程;与纯WC粉体烧结试样相比,少量Co在WC-Co复合粉体中的均匀分布,大大降低了烧结温度,促进了粉体烧结致密化进程,各项性能得到显著提高,密度达15.56 g/cm3,硬度为2409 HV30,断裂韧性为9.2 MPa.m1/2。  相似文献   

7.
传统硬质合金中硬度和韧性是难以兼得的一对矛盾体,而通过热处理改善WC-Co硬质合金结构与性能则可获得具有优异综合性能的硬质合金。本文以压制烧结制成的ZL40.5硬质合金为研究对象,在1 050~1 300℃范围内进行油性介质淬火,采用扫描电镜(SEM)及X射线衍射(XRD)等检测方法研究了淬火温度对ZL40.5硬质合金微观组织结构的影响。结果表明:淬火过程中WC晶粒尖角溶解,形貌变得圆钝;随淬火温度升高,Co相体积分数升高,WC晶粒尺寸、邻接度略有降低;W、C原子在Co中的固溶度随淬火温度增加而增加,进而使室温下保留的α-Co含量随之增加,淬火温度在1 250℃时具有最佳结构参数。  相似文献   

8.
基体物相特性会对涂层硬质合金整体的力学性能产生重要影响。制备了具有不同WC晶粒度和Co含量的WC-Co系列硬质合金,采用直流磁控溅射技术在其表面沉积同种Ti_(0.94)Si_(0.06)N/Ti Al Si N/Al_(0.52)Ti_(0.48)N涂层。结果表明,随WC-Co硬质合金基体WC晶粒度(1.2~0.4μm)的降低或Co含量(12Co~3Co)的减少,涂层与基体完全剥离时的临界载荷L_(C2)逐渐增大。L_(C2)与基体硬度H_S或弹性模量E_S之间在数值上具有较好的线性正相关性。涂层首次剥离时的临界载荷L_(C1)能反映涂层的内聚失效抗力。适当的WC晶粒度和Co含量(超细晶10Co)能避免涂层产生较早的内聚失效或界面失效,有利于L_(C1)和L_(C2)的同步改善。  相似文献   

9.
通过建模分析和实际测量,对WC-Co硬质合金结构参数与烧结表面残余应力之间的关系进行了研究。结果表明,硬质合金的结构参数对烧结表面残余应力有很大的影响。相同WC粒径条件下,随Co相体积分数的增大,硬质合金烧结表面残余应力的数值增大。当Co相体积分数固定时,增大WC颗粒的粒径,可明显降低硬质合金烧结表面的残余应力。实际测量结果与分析结论相吻合。  相似文献   

10.
使用新的制备方法成功制备了功能梯度WC-Co/WC-Fe-Ni双层结构硬质合金。冷压成型所需的压制压力需要保持在15MPa,在这个压力下WC-Co和WC-Fe-Ni层的烧结收缩率相同,制备的双层合金没有分层和裂纹等不利现象出现。采用X射线衍射(XRD)仪、光学显微镜(OM)和扫描电子显微镜(SEM)等实验手段研究了双层合金的相组成与微观结构。发现合金中没有η或者石墨相的存在,而且,WC-Co和WC-Fe-Ni层间的界面处结合良好。同时,在WC-Co/WC-Fe-Ni双层结构硬质合金的界面处有明显的连续变化的Fe,Ni和Co成分梯度,两层间的成分梯度导致界面附近的硬度梯度的形成。制备的功能梯度WC-Co/WC-Fe-Ni双层结构硬质合金同时具有高的硬度、耐磨性和韧性。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号