首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of the cardiac transverse-axial tubular system (TATS) has been known for decades, but its function has received little attention. To explore the possible role of this system in the physiological modulation of electrical and contractile activity, we have developed a mathematical model of rat ventricular cardiomyocytes in which the TATS is described as a single compartment. The geometrical characteristics of the TATS, the biophysical characteristics of ion transporters and their distribution between surface and tubular membranes were based on available experimental data. Biophysically realistic values of mean access resistance to the tubular lumen and time constants for ion exchange with the bulk extracellular solution were included. The fraction of membrane in the TATS was set to 56%. The action potentials initiated in current-clamp mode are accompanied by transient K+ accumulation and transient Ca2+ depletion in the TATS lumen. The amplitude of these changes relative to external ion concentrations was studied at steady-state stimulation frequencies of 1-5 Hz. Ca2+ depletion increased from 7 to 13.1% with stimulation frequency, while K+ accumulation decreased from 4.1 to 2.7%. These ionic changes (particularly Ca2+ depletion) implicated significant decrease of intracellular Ca2+ load at frequencies natural for rat heart.  相似文献   

2.
Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.  相似文献   

3.
We present a numerical algorithm for the determination of muscle response by the finite element method. Hill's three-element model is used as a basis for our analysis. The model consists of one linear elastic element, coupled in parallel with one non-linear elastic element, and one non-linear contractile element connected in series. An activation function is defined for the model in order to describe a time-dependent character of the contractile element with respect to stimulation. Complex mechanical response of muscle, accounting for non-linear force–displacement relation and change of geometrical shape, is possible by the finite element method. In an incremental-iterative scheme of calculation of equilibrium configurations of a muscle, the key step is determination of stresses corresponding to a strain increment. We present here the stress calculation for Hill's model which is reduced to the solution of one non-linear equation with respect to the stretch increment of the serial elastic element. The muscle fibers can be arbitrarily oriented in space and we give a corresponding computational procedure of calculation of nodal forces and stiffness of finite elements. The proposed computational scheme is built in our FE package PAK, so that real muscles of complex three-dimensional shapes can be modelled. In numerical examples we illustrate the main characteristic of the developed numerical model and the possibilities of solution of real problems in muscle functioning. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Energetic efficiency is an important indicator of cardiac function in acute myocardial infarction. However, the relationship between cardiac energetic efficiency and infarct size is not perfectly elucidated. In this study, the relationship is analysed by means of simulation using a theoretical model of the guinea pig left ventricle. In simulation with varied ratios of infarct area, pressure–volume area (PVA), which is an index of total mechanical energy by ventricular contraction, and myocardial oxygen consumption (MVO2) are calculated for each infarct ratio. Then, change of PVA when MVO2 alters (PVA/MVO2) as a well‐known index of energy conversion efficiency is evaluated. In addition, PVA/VO2, which represents a ratio of PVA change to alteration of mean oxygen consumption of myocytes except for infarct myocytes, is introduced as an index for real energetic efficiency. In simulation results, PVA/MVO2 increases but PVA/VO2 decreases as infarct area expands, because with expansion of infarct area PVA decreases but VO2 remains almost unchanged because of larger shortening of myocytes. This implies that the enlargement of shortening of noninfarcted myocyte to compensate for depression of cardiac output is a potential cause of myocardial remodelling.Inspec keywords: blood vessels, cardiology, cellular biophysics, haemodynamics, muscle, oxygen, physiological modelsOther keywords: theoretical analysis, left ventricular energetic efficiency, acute infarct size, cardiac function, acute myocardial infarction, cardiac energetic efficiency, guinea pig left ventricle, pressure‐volume area, total mechanical energy, ventricular contraction, myocardial oxygen consumption, energy conversion efficiency, myocyte mean oxygen consumption, infarct myocytes, energetic efficiency index, noninfarcted myocyte shortening enlargement, cardiac output, myocardial remodellingInspec keywords: blood vessels, cardiology, cellular biophysics, haemodynamics, muscle, oxygen, physiological modelsOther keywords: theoretical analysis, left ventricular energetic efficiency, acute infarct size, cardiac function, acute myocardial infarction, cardiac energetic efficiency, guinea pig left ventricle, pressure‐volume area, total mechanical energy, ventricular contraction, myocardial oxygen consumption, energy conversion efficiency, myocyte mean oxygen consumption, infarct myocytes, energetic efficiency index, noninfarcted myocyte shortening enlargement, cardiac output, myocardial remodelling  相似文献   

5.
Abstract

While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.  相似文献   

6.
A finite element model of skeletal muscles   总被引:1,自引:0,他引:1  
The present paper surveys recent developments in constitutive and computational modelling of skeletal muscles, concerning mainly the generalization to two- and three-dimensional (2D, 3D) continuum deformation analysis of typical one-dimensional (1D) Hill-type muscle models. Extending our previous work in the field and recent contributions by other authors, we describe a constitutive model for skeletal muscles that incorporates all the features of the 3 typical elements (parallel elastic, series elastic and contractile elements) in Hill's muscle model. In particular the proposed incompressible transversely isotropic model incorporates: a multiplicative split of the fibre stretch into contractile and (series) elastic stretches; the possibility of energy storage in the series elastic element; the dependence of the contractile stress on the strain rate; the governing equation of activation dynamics, so that general histories of neural stimulation may be taken as input data. The resulting 2D or 3D constitutive equations are implemented as user subroutines in the large deformation finite element software package ABAQUS. Simple numerical tests are presented and discussed, as well as an example that involves passive or active deformations of a pelvic floor muscle using shell finite elements.  相似文献   

7.
The present paper surveys recent developments in constitutive and computational modelling of skeletal muscles, concerning mainly the generalization to two- and three-dimensional (2D, 3D) continuum deformation analysis of typical one-dimensional (1D) Hill-type muscle models. Extending our previous work in the field and recent contributions by other authors, we describe a constitutive model for skeletal muscles that incorporates all the features of the 3 typical elements (parallel elastic, series elastic and contractile elements) in Hill's muscle model. In particular the proposed incompressible transversely isotropic model incorporates: a multiplicative split of the fibre stretch into contractile and (series) elastic stretches; the possibility of energy storage in the series elastic element; the dependence of the contractile stress on the strain rate; the governing equation of activation dynamics, so that general histories of neural stimulation may be taken as input data. The resulting 2D or 3D constitutive equations are implemented as user subroutines in the large deformation finite element software package ABAQUS. Simple numerical tests are presented and discussed, as well as an example that involves passive or active deformations of a pelvic floor muscle using shell finite elements.  相似文献   

8.
The effects of acidosis on cardiac electrophysiology and excitation-contraction coupling have been studied extensively. Acidosis decreases the strength of contraction and leads to altered calcium transients as a net result of complex interactions between protons and a variety of intracellular processes. The relative contributions of each of the changes under acidosis are difficult to establish experimentally, however, and significant uncertainties remain about the key mechanisms of impaired cardiac function. In this paper, we review the experimental findings concerning the effects of acidosis on the action potential and calcium handling in the cardiac ventricular myocyte, and we present a modelling study that establishes the contribution of the different effects to altered Ca2+ transients during acidosis. These interactions are incorporated into a dynamical model of pH regulation in the myocyte to simulate respiratory acidosis in the heart.  相似文献   

9.
To create life‐like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self‐actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid‐fish‐shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self‐actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot.  相似文献   

10.
Repolarization of the action potential (AP) in cardiac muscle is a major determinant of refractoriness and excitability, and can also strongly modulate excitation-contraction coupling. In clinical cardiac electrophysiology, the Q-T interval, and hence action potential duration, is both an essential marker of normal function and an indicator of risk for arrhythmic events. It is now well known that the termination of the plateau phase of the AP and the repolarization waveform involve a complex interaction of transmembrane ionic currents. These include a slowly inactivating Na+ current, inactivating Ca2+ current, the decline of an electrogenic current due to Na+/Ca2+ exchange and activation of three or four different K+ currents. At present, many of the quantitative aspects of this important physiological and pathophysiological process remain incompletely understood. Recently, three mathematical models of the membrane AP in human ventricle myocyte have been developed and made available on the Internet. In this study, we have implemented these models for the purpose of comparing the K+ currents, which are responsible for terminating the plateau phase of the AP and generating its repolarization. In this paper, our emphasis is on the two highly nonlinear inwardly rectifying potassium currents, (IK1) and (IK,r). A more general goal is to obtain improved understanding of the ionic mechanisms, which underlie all-or-none repolarization and the parameter denoted 'repolarization reserve' in the human ventricle. Further, insights into these fundamental variables can be expected to provide a more rational basis for clinical assessment of the Q-T and Q-TC intervals, and hence provide insights into some of the very substantial efforts in safety pharmacology, which are based on these parameters.  相似文献   

11.
Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical environments can be disadvantagous. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality, but they are rare. Protein bodies from sieve elements of higher plants provide a novel example. sieve elements form microfluidics systems for pressure-driven transport of photo-assimilates throughout the plant. Unique protein bodies in the sieve elements of legumes act as cellular stopcocks, by undergoing a Ca2+-dependent conformational switch in which they plug the sieve element. In living cells, this reaction is probably controlled by Ca2+-transporters in the cell membrane. Here we report the rapid, reversible, anisotropic and ATP-independent contractility in these protein bodies in vitro. Considering the unique biological function of the legume 'crystalloid' protein bodies and their contractile properties, we suggest to give them the distinctive name forisome ('gate-body'; from the Latin foris, the wing of a gate).  相似文献   

12.
Driven by enormous clinical need, myocardial tissue engineering has become a prime focus of research within the field of tissue engineering. Myocardial tissue engineering combines isolated functional cardiomyocytes and a biodegradable or nondegradable biomaterial to repair diseased heart muscle. The challenges in heart muscle engineering include cell related issues (such as scale up in a short timeframe, efficiency of cell seeding or cell survival rate, and immune rejection), the design and fabrication of myocardial tissue engineering substrates, and the engineering of tissue constructs in vitro and in vivo. Several approaches have been put forward, and a number of models combining various polymeric biomaterials, cell sources and bioreactors have been developed in the last 10 years for myocardial tissue engineering. This review provides a comprehensive update on the biomaterials, as well as cells and biomimetic systems, used in the engineering of the cardiac muscle. The article is organized as follows. A historic perspective of the evolution of cardiac medicine and emergence of cardiac tissue engineering is presented in the first section. Following a review on the cells used in myocardial tissue engineering (second section), the third section presents a review on biomaterials used in myocardial tissue engineering. This section starts with an overview of the development of tissue engineering substrates and goes on to discuss the selection of biomaterials and design of solid and porous substrates. Then the applications of a variety of biomaterials used in different approaches of myocardial tissue engineering are reviewed in great detail, and related issues and topics that remain challenges for the future progress of the field are identified at the end of each subsection. This is followed by a brief review on the development of bioreactors (fourth section), which is an important achievement in the field of myocardial tissue engineering, and which is also related to the biomaterials developed. At the end of this article, the major achievements and remaining challenges are summarized, and the most promising paradigm for the future of heart muscle tissue engineering is proposed (fifth section).  相似文献   

13.
An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.  相似文献   

14.
Myocardial fibrosis is a pathological process that occurs during heart failure (HF). It involves microstructural remodeling of normal myocardial tissue, and consequent changes in both cardiac geometry and function. The role of myocardial structural remodeling in the progression of HF remains poorly understood. We propose a constitutive modeling framework, informed by high-resolution images of cardiac tissue structure, to model the mechanical response of normal and fibrotic myocardium. This image-driven constitutive modeling approach allows us to better reproduce and understand the relationship between structural and functional remodeling of ventricular myocardium during HF.  相似文献   

15.
Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson's trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat's pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering.  相似文献   

16.
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.  相似文献   

17.
Li X  Zhao L  Chen Z  Lin Y  Yu P  Mao L 《Analytical chemistry》2012,84(12):5285-5291
Continuous monitoring of lactate production from cardiomyocytes is of great physiological and pathological importance since the level of lactate in extracellular fluid is closely associated with myocardial energy metabolism with implication in the diagnosis and therapeutics of myocardial hypoxia and ischemia. This study demonstrates an electrochemical approach to continuous monitoring of lactate production from neonatal rat cardiomyocytes following myocardial hypoxia with a dehydrogenase-based electrochemical biosensor and a negative pressure driven culture sampling. To eliminate the effect of pH variation occurring following the cardiomyocyte hypoxia on the biosensor response and to supply nicotinamide adenine dinucleotide (NAD(+)) cofactor necessary for the enzymatic reaction of lactate dehydrogenase (LDH), artificial cerebrospinal fluid (aCSF) containing NAD(+) cofactor is externally perfused and mixed online with cell culture before the culture goes to the detector. The method exhibits a high selectivity against the electrochemically active species endogenously existing in the extracellular culture of cardiomyocytes and a high tolerance against the variation of pH following cardiomyocyte hypoxia. The dynamic linear range for lactate detection is from 0.20 to 10 mM (I (nA) = 25.6 C(Lactate) (mM) + 20.1, γ = 0.996) with a detection limit of 0.16 mM (S/N = 3). The physiological level of the extracellular lactate of neonatal rat cardiomyocytes is determined to be 1.1 ± 0.1 mM (n = 3) with the cell density of about 0.5 × 10(3) cells/mm(2). When the cardiomyocytes are subject to hypoxia induced with anoxic reagents, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), the extracellular lactate increases to 255 ± 30.3% (n = 3), relative to the physiological level, following 20 min of the hypoxia. This study essentially offers a new and effective electrochemical platform for investigating energy metabolism during cardiac physiological and pathological processes.  相似文献   

18.
Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.  相似文献   

19.
Contrast agents for ultrasound imaging, composed of tiny gas microbubbles, have become a reality in clinical routine. They are extensively used in radiology for detection and characterization of various tumors and in cardiology for left ventricular opacification. Recent experimental studies showed that ultrasound waves in combination with contrast agent microbubbles increase transiently cell membrane permeability in a process known as sonoporation. This effect is thought to allow foreign molecules to enter the cell. In that context, we explored the cell membrane's responses to microbubbles' oscillations as the mechanism is not completely understood. Breast cancer cell line in combination with contrast microbubbles were used. Ultrasound was applied using a transducer of 1 MHz center frequency transmitting a 10-cycle burst of different acoustic pressures repeated every 100 mus. Patch-clamp technique in whole cell configuration was used to explore transmembrane ion exchange through the variations in membrane potential. To characterize the activated ion channels, the variations of the intracellular calcium (Ca(2+)) concentration were explored using a fluorescent marker. The results revealed that ultrasound stimulation induces a rapid hyperpolarization of cell membrane potential when the microbubble is in direct contact with the cell, but the potential returned to its initial value when ultrasound stimulation stopped. The change in cell membrane potential indicates the activation of specific ion channels and depends on the quality of microbubble adhesion to the cell membrane. Microbubbles were shown to induce a mechanical stretch activating BKca channels. Simultaneous Ca(2+) measurements indicate a slow and progressive Ca(2+) increase that is likely a consequence of BKca channels opening not a cause. These results demonstrate that microbubbles' oscillations under ultrasound activation entail modulation of cellular function and signaling by t- riggering the modulation of ionic transports through the cell membrane. Cells response to the mechanical stretch caused by gentle microbubble oscillations is characterized by the opening of BKca stretch channels and a Ca(2+) flux, which might potentially trigger other cellular responses responsible for membrane sonopermeabilization.  相似文献   

20.
Cardiac fibroblasts, the noncontractile cells of the heart, contribute to myocardial maintenance through the deposition, degradation, and organization of collagen. Adding polyelectrolyte-coated gold nanorods to three-dimensional constructs composed of collagen and cardiac fibroblasts reduced contraction and altered the expression of mRNAs encoding beta-actin, alpha-smooth muscle actin, and collagen type I. These data show that nanomaterials can modulate cell-mediated matrix remodeling and suggest that the targeted delivery of nanomaterials can be applied for antifibrotic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号