首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the quality-of-service (QoS)-driven multicast routing problem in a sparse-splitting optical network. The main objective is to minimize the total cost of wavelength channels utilized by the light-tree while satisfying required QoS parameters. In this paper, both the optical-layer constraints (e.g., optical signal power) and application-layer requirements (e.g., end-to-end delay and inter-destination delay variation) are considered as the QoS parameters. First, integer linear programming (ILP) formulations to solve the optimal multicast routing problem with the given QoS parameters are presented. Solving the ILP formulations for large-scale networks can easily overwhelm the capabilities of state-of-the-art computing facilities, and hence, a heuristic algorithm is proposed to construct a feasible light-tree that satisfies the required QoS parameters in large-scale networks. Simulation results demonstrate the performance of the proposed heuristic algorithm in terms of the cost of utilized wavelength channels.  相似文献   

2.
We study the problem of multicast routing and wavelength assignment (MC-RWA) in multi-hop optical WDM networks with respect to several target functions. Specially, we first study the MC-RWA problem under the target of minimize maximum hops, an efficient MC-RWA algorithm was proposed for that case. But for the objective of minimizing the total number of wavelength conversions, problem turns out to be NP-hard, we proposed a new approximation MC-RWA algorithm based on group Steiner tree. At last, combining the two objectives, a bi-factor approximation algorithm was introduced to minimize the both targets in the system simultaneously.  相似文献   

3.
Multicast routing and wavelength assignment in multihop optical networks   总被引:1,自引:0,他引:1  
This paper addresses multicast routing in circuit-switched multihop optical networks employing wavelength-division multiplexing. We consider a model in which multicast communication requests are made and released dynamically over time. A multicast connection is realized by constructing a multicast tree which distributes the message from the source node to all destination nodes such that the wavelengths used on each link and the receivers and transmitters used at each node are not used by existing circuits. We show that the problem of routing and wavelength assignment in this model is, in general, NP-complete. However, we also show that for any given multicast tree, the wavelength assignment problem can be solved in linear time.  相似文献   

4.
组播是一种应用广泛的点到多点或多点到多点的通信方式,光层组播以其独特优势引起了人们的关注和重视.在综合分类的基础上,对光网络组播波长分配算法的最新研究进展进行了归纳和总结,并对今后需重点研究的方向进行了展望.  相似文献   

5.
Efficient routing and wavelength assignment for multicast in WDMnetworks   总被引:1,自引:0,他引:1  
The next generation multimedia applications such as video conferencing and HDTV have raised tremendous challenges on the network design, both in bandwidth and service. As wavelength-division-multiplexing (WDM) networks have emerged as a promising candidate for future networks with large bandwidth, supporting efficient multicast in WDM networks becomes eminent. Different from the IP layer, the cost of multicast at the WDM layer involves not only bandwidth (wavelength) cost, but also wavelength conversion cost and light splitting cost. It is well known that the optimal multicast problem in WDM networks is NP-hard. In this paper, we develop an efficient approximation algorithm consisting of two separate but integrated steps: multicast routing and wavelength assignment. We prove that the problem of optimal wavelength assignment on a multicast tree is not NP-hard; in fact, an optimal wavelength assignment algorithm with complexity of O(NW) is presented. Simulation results have revealed that the optimal wavelength assignment beats greedy algorithms by a large margin in networks using many wavelengths on each link such as dense wavelength-division-multiplexing (DWDM) networks. Our proposed heuristic multicast routing algorithm takes into account both the cost of using wavelength on links and the cost of wavelength conversion. The resulting multicast tree is derived from the optimal lightpaths used for unicast  相似文献   

6.
路由与波长分配问题是波分复用光网中的一个关键问题.文章从经济学的角度出发提出了路由与波长分配问题的一种数学模型,并且进行了分析和仿真.结果表明,模型较大程度地反应了现实,对网络运营商而言很有参考价值.  相似文献   

7.
This paper addresses the problem of multicast wavelength assignment for sparse wavelength conversion (MWA-SWC) in wavelength-routed wavelength-division-multiplexing (WDM) networks. It aims to optimally allocate the available wavelength for each link of the multicast tree, given a sparse wavelength conversion network and a multicast request. To our knowledge, little research work has been done to address this problem in literature.In this paper, we propose a new technique called MWA-SWC algorithm to solve the problem. The algorithm first maps the multicast tree from the sparse conversion case to the full conversion case by making use of a novel virtual link method to carry out the tree mapping. The method provides a forward mapping to generate an auxiliary tree as well as a reverse mapping to recover the original tree. Applying the auxiliary tree, we propose a dynamic programing algorithm for the wavelength assignment (WA) aiming to minimize the number of wavelength converters (NWC) required. Simulation results show that our new algorithm outperforms both random and greedy algorithms with regard to minimizing the NWC. Testing on various scenarios by varying the number of wavelength conversion nodes in the tree has confirmed the consistency of the performance. The primary use of the MWA-SWC algorithm is for static traffic. However, it can also serve as a baseline for dynamic heuristic algorithms. Typically, the MWA-SWC algorithm will provide great benefit when the number of available wavelengths on each link of the multicast tree is relatively large and the performance advantage is significant.  相似文献   

8.
全光网静态路由选择和波长分配的分层图算法   总被引:1,自引:0,他引:1  
文章提出一种将路由选择和波长分配结合起来的启发式的路由选择和波长分配(RWA)算法.通过这种新的分层图算法和限制光跳距的加权系数来优化全光网的静态路由选择和波长分配,使建立光连接时所需的波长数达到最少.最后对实际的ARPANet等5种光网络进行了计算机仿真,证明了本算法比以前的算法有更好的性能.  相似文献   

9.
The bandwidth of a wavelength channel in WDM optical networks is very high compared to the user’s requirements for various applications. Therefore, there is a scope for better utilization of channel bandwidth by traffic grooming, in which several user’s channels are multiplexed for transmission over a single channel. Several research works have been reported on traffic grooming routing and wavelength assignment (GRWA) for static and dynamic traffic pattern under centralized environment. Distributed dynamic grooming routing and wavelength assignment (DDGRWA) is a new and quite unexplored area in WDM optical mesh networks. This article introduces the concept of distributed traffic grooming in WDM mesh networks which also includes virtual topology construction, reconfiguration, routing and wavelength assignment in the distributed environment assuming incoming traffic to be dynamic in nature. We have also presented simulation results of our algorithm on dynamically generated traffic under various network topologies.  相似文献   

10.
We consider large optical networks in which nodes employ wavelength-routing switches which enable the establishment of wavelength-division-multiplexed (WDM) channels, called lightpaths, between node pairs. We propose a practical approach to solve routing and wavelength assignment (RWA) of lightpaths in such networks. A large RWA problem is partitioned into several smaller subproblems, each of which may be solved independently and efficiently using well-known approximation techniques. A multicommodity flow formulation combined with randomized rounding is employed to calculate the routes for lightpaths. Wavelength assignments for lightpaths are performed based on graph-coloring techniques. Representative numerical examples indicate the accuracy of our algorithms  相似文献   

11.
We have developed a new layered-routing approach to address the problem of all-optical multicast over wavelength-routed wavelength division multiplexing (WDM) networks. We model the WDM network as a collection of wavelength layers with sparse light- splitting (LS) and wavelength conversion (WC) capabilities. We apply the degree constraint technique to solve the problem. The approach is capable of completing multicast routing and wavelength assignment (MCRWA) in one step. We propose two generic frameworks to facilitate heuristic development. Any heuristic that is derived from either Prim’s or Kruskal’s algorithm can be easily imported to solve the MCRWA problem. One example is given for each framework to demonstrate heuristic development. Extensive simulations were carried out to measure the performance of heuristics developed from the frameworks. The results show that the STRIGENT scheme is suitable for hardware design and it is advisable to deploy light splitters and wavelength converters to the same node for better performance.  相似文献   

12.
该文首先探讨了抗毁WDM网中支持QoS的分层图模型,在此基础上提出一种抗毁WDM网中支持QoS的选路和波长分配算法。该算法根据上层业务不同的QoS要求,对其光路建立请求区别对待,以满足它们不同的阻塞率和恢复率要求。计算机仿真结果表明该算法既满足了上层业务不同的QoS要求,同时又充分利用了有限的网络资源,使全网的平均阻塞率降低。  相似文献   

13.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The problem of routing and wavelength assignment (RWA) is critically important for increasing the efficiency of wavelength-routed all-optical networks. Given the physical network structure and the required connections, the RWA problem is to select a suitable path and wavelength among the many possible choices for each connection so that no two paths sharing a link are assigned the same wavelength. In work to date, this problem has been formulated as a difficult integer programming problem that does not lend itself to efficient solution or insightful analysis. In this work, we propose several novel optimization problem formulations that offer the promise of radical improvements over the existing methods. We adopt a (quasi-)static view of the problem and propose new integer-linear programming formulations, which can be addressed with highly efficient linear (not integer) programming methods and yield optimal or near-optimal RWA policies. The fact that this is possible is surprising, and is the starting point for new and greatly improved methods for RWA. Aside from its intrinsic value, the quasi-static solution method can form the basis for suboptimal solution methods for the stochastic/dynamic settings.  相似文献   

15.
For the purpose of reducing the complexity and cost of optical large-scale cross-connect, wavelengths are grouped into wavebands or fiber to be switched as a single entity, which is called multi- granularity switching. However, it introduces more complexity into the routing and wavelength assignment problem. In this paper, we propose a novel graph model for describing the states of the multi-granularity switching WDM networks. Based on the model, the dynamic routing and wavelength assignment problems for multi-granularity traffic can be solved jointly, and different on-line wavelength grooming policies can be achieved simultaneously. By simulation, we compared the performance of our algorithms under different policy and different percent of fibers for fiber switching. The result proved that our algorithms yield better performance than those deal with the routing and wavelength assignment separately. This work was supported in part by NSFC Project No. 90104003, 60272023, 60372025 and National 863 project No. 2005AA122310.  相似文献   

16.
WDM网络中支持QoS的路由与波长分配算法   总被引:1,自引:1,他引:1  
针对波分复用(wDM)网络中的路由与波长分配问题。提出了一种支持服务质量(QoS)的约束搜索算法。基于多目标规划模型,这种搜索算法可为网络各节点创建路由表,根据路由表信息求出非支配路径集合,从而一次性完成寻找路由和分配波长两项任务。仿真实例证明了该算法的有效性。  相似文献   

17.
Optical wavelength-division multiplexed (WDM) networks often include optical cross-connects with multigranularity switching capability, such as switching on a single lambda, a waveband, or an entire fiber basis. In addition, it has been shown that routing and wavelength assignment (RWA) in an arbitrary mesh WDM network is an NP-complete problem. In this paper, we propose an efficient approximation approach, called Lagrangean relaxation with heuristics (LRH), aimed to resolve RWA in multigranularity WDM networks particularly with lambda and fiber switches. The task is first formulated as a combinatorial optimization problem in which the bottleneck link utilization is to be minimized. The LRH approach performs constraint relaxation and derives a lower-bound solution index according to a set of Lagrangean multipliers generated through subgradient-based iterations. In parallel, using the generated Lagrangean multipliers, the LRH approach employs a new heuristic algorithm to arrive at a near-optimal upper-bound solution. With lower and upper bounds, we conduct a performance study on LRH with respect to accuracy and convergence speed under different parameter settings. We further draw comparisons between LRH and an existing practical approach via experiments over randomly generated and several well-known large sized networks. Numerical results demonstrate that LRH outperforms the existing approach in both accuracy and computational time complexity, particularly for larger sized networks.  相似文献   

18.
This letter proposes a tabu search heuristic for solving the routing and wavelength assignment (RWA) problem in optical WDM networks, considering the wavelength continuity constraint and a given set of connections to satisfy. For a number of available wavelengths on each link, this algorithm attempts to maximize the number of routed connections. The algorithm has been implemented and tested on NSFNET and EONNET networks and comparisons have been done with other algorithms in terms of the blocking rate. Generally, the results obtained with our tabu search heuristic are better than those provided by these algorithms.  相似文献   

19.
《Optical Fiber Technology》2007,13(3):191-197
We consider the routing and wavelength assignment (RWA) problem on wavelength division multiplexing (WDM) networks without wavelength conversion. When the physical network and required connections are given, RWA is the problem to select a suitable path and wavelength among the many possible choices for each connection such that no two paths using the same wavelength pass through the same link. In WDM optical networks, there is need to maximize the number of connections established and to minimize the blocking probability using limited resources. This paper presents efficient RWA strategies, which minimizes the blocking probability. Simulation results show that the performance of the proposed strategies is much better than the existing strategy.  相似文献   

20.
为解决光组播路由中组播中路由代价和波长资源消耗单一化造成的组播路树路由的代价过高问题,在分光节点约束条件下,提出了光组播路由代价与波长使用量联合优化的长路优先(LPF)方法和短路优先(SPF)方法。算法通过检查最小光组播树是否存在节点分光约束的问题,根据设置的波长使用代价控制因子,使LPF或SPF的路由代价和波长使用量最小。LPF方法首先选择组播树最长路径或新波长通道重路由受分光约束的目的节点,SPF方法先选择组播树中最短路径或新波长通道重路由受分光约束的目的节点,仿真结果表明,本文提出的两种联合优化方法都能实现路由代价较低和波长需求较少的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号