首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用脂肪酶Novozyme 435催化月桂酸甲酯与甘油进行酯交换反应制备单月桂酸甘油酯。以反应体系中单月桂酸甘油酯的质量分数为考察指标,通过单因素实验和正交实验对酶催化合成工艺进行优化,得到最佳的工艺条件为:底物摩尔比n(月桂酸甲酯)∶n(甘油)=1∶5,底物质量分数为20%(即月桂酸甲酯与叔丁醇的质量百分数,下同),反应温度为55℃,酶添加量为7%(即酶与月桂酸甲酯的质量百分数,下同),初始含水量为20%(以月桂酸甲酯质量计,下同),转速为100 r/min,反应时间为1 h,在该条件下,体系中单月桂酸甘油酯的质量分数为71.86%。经提纯后终产物中单月桂酸甘油酯的质量分数高于95%,最高可达98.76%,而双月桂酸甘油酯的质量分数低于5%。酶重复使用6次,单月桂酸甘油酯的质量分数从71.75%降至68.36%,其催化性能无显著降低。  相似文献   

2.
采用脂肪酶Novozyme 435催化月桂酸甲酯与甘油进行酯交换反应制备单月桂酸甘油酯。以反应体系中单月桂酸甘油酯的质量分数为考察指标,通过单因素实验和正交实验对酶催化合成工艺进行优化,得到最佳的工艺条件为:底物摩尔比1:5,底物质量分数20%,反应温度55 ℃,酶添加量为7%,初始含水量为20%,转速为100 r/min,反应时间1 h,在该条件下,体系中单月桂酸甘油酯的质量分数为71.86%。经提纯后终产物中单月桂酸甘油酯的质量分数高于95%,最高可达98.76%,而双月桂酸甘油酯的质量分数低于5%。在最佳工艺条件下,酶重复使用6次,单月桂酸甘油酯的质量分数从71.75%降至68.36%,其催化性能无显著降低。  相似文献   

3.
以月桂酸和甘油为原料,叔丁醇为介质,采用脂肪酶催化合成了月桂酸单甘油酯(GML),采用单因素试验验证了GML的较佳合成工艺,并研究了GML对大肠杆菌的抑制效果,结果表明,叔丁醇与甘油的质量比为1.5∶1,脂肪酶用量为12%,反应温度70℃,甘油和月桂酸的摩尔比为3∶1,反应时间为1.5 h为较优条件。抑菌测试表明GML对大肠杆菌有着显著的抑制作用,抑菌效果随GML质量浓度增大而增强,GML质量浓度达到16 mg/mL时抑菌圈直径不再增大,在pH=5.7的弱酸环境下的抑菌效果和抑菌率的半衰期均强于pH=7.2的中性条件,72 h时pH=5.7的环境下GML对大肠杆菌的抑菌率依旧能够保持在3.9%。  相似文献   

4.
酶法合成月桂酸单甘油酯   总被引:2,自引:0,他引:2  
采用脂肪酶直接对月桂酸和甘油进行酯化,考察了反应温度、水份、反应物摩尔比及酶用量对月桂酸单甘油酯合成的影响,确定了酶促反应进行的最适反应温度为60℃,反应物摩尔比为1:1,酶用量为0.5%,最终产物含量可达70%以上,后处理过程大大简化.  相似文献   

5.
研究了直接酯化法合成单月桂酸甘油酯(GML)工艺,产物GPC测定纯度45%。考察了GML不同含量和复配剂型的生物活性,初步认为副产二酯、三酯不影响其防腐性能,而GML与山梨酸、磷酸盐等复配有明显的增效作用。  相似文献   

6.
脂肪酶催化合成单脂肪酸甘油酯   总被引:2,自引:0,他引:2  
对脂肪本矣合成单甘酯中的催化作用作了综述。介绍了有机溶剂、反相胶束和无溶剂固相等反应体系中用不同脂肪酶对油脂选择水解、脂肪酸的酯化或脂肪酸酯与甘油的转酯反应、油脂甘油解以及甘油基团保护反应等合成方法。2  相似文献   

7.
以甘油和丙酮为原料,对甲苯磺酸催化合成丙酮缩甘油。以响应面法优化合成工艺,考察物料比(甘油/丙酮)、反应时间、催化剂用量对丙酮缩甘油的得率的影响。结果表明,最佳合成条件为:物料比(甘油∶丙酮)为1∶5(摩尔比),催化剂用量为甘油用量的5%,反应时间5.5 h。在该工艺条件下,缩甘油的得率为90.52%。  相似文献   

8.
《应用化工》2022,(3):445-449
以甘油和丙酮为原料,对甲苯磺酸催化合成丙酮缩甘油。以响应面法优化合成工艺,考察物料比(甘油/丙酮)、反应时间、催化剂用量对丙酮缩甘油的得率的影响。结果表明,最佳合成条件为:物料比(甘油∶丙酮)为1∶5(摩尔比),催化剂用量为甘油用量的5%,反应时间5.5 h。在该工艺条件下,缩甘油的得率为90.52%。  相似文献   

9.
庄子翀  黄宝华  刘军  史娜  方岩雄 《化学试剂》2014,(6):546-548,576
采用基团保护法制备标题化合物,以离子液体1-甲基-3-(3-丙烷磺酸基)咪唑硫酸氢盐作为催化剂应用于月桂酸与异亚丙基甘油的酯化反应中,所得酯化产物经脱丙酮保护得到标题化合物。实验结果表明,当n(月桂酸)∶n(异亚丙基甘油)∶n(离子液体)=1∶1.2∶0.06,以甲苯为带水剂,分水回流反应3 h,得到异亚丙基甘油月桂酸酯,再经水解可得目标产物,其含量和收率分别为77.0%和69.3%。与传统方法比较,本法具有反应条件温和,操作简便以及催化剂可重复利用的优点。  相似文献   

10.
月桂酸单甘酯的催化合成   总被引:1,自引:0,他引:1  
文章以磷钨酸为催化剂,4分子筛为脱水剂,在无溶剂条件下月桂酸和甘油为原料合成月桂酸单甘酯,考察了反应温度、摩尔比(月桂酸/甘油)、反应时间、催化剂用量、分子筛用量对反应产率的影响,并确定了反应最佳条件是:反应温度200℃,摩尔比(月桂酸/甘油)1∶2.5,反应时间为2 h,磷钨酸用量为3%,分子筛用量为5%(月桂酸与...  相似文献   

11.
To study the dynamic behavior of a process,time-resolved data are collected at different time instants during each of a series of experiments,which are usually designed with the design of experiments or the design of dynamic experiments methodologies.For utilizing such time-resolved data to model the dynamic behavior,dynamic response surface methodology(DRSM),a datadriven modeling method,has been proposed.Two approaches can be adopted in the estimation of the model parameters:stepwise regression,used in several of previous publications,and Lasso regression,which is newly incorporated in this paper for the estimation of DRSM models.Here,we show that both approaches yield similarly accurate models,while the computational time of Lasso is on average two magnitude smaller.Two case studies are performed to show the advantages of the proposed method.In the first case study,where the concentrations of different species are modeled directly,DRSM method provides more accurate models compared to the models in the literature.The second case study,where the reaction extents are modeled instead of the species concentrations,illustrates the versatility of the DRSM methodology.Therefore,DRSM with Lasso regression can provide faster and more accurate datadriven models for a variety of organic synthesis datasets.  相似文献   

12.
The aim of this study was to optimize production of MAG by lipase-catalyzed glycerolysis in a tert-pentanol system. Twenty-nine batch reactions consisting of glycerol, sunflower oil, tert-pentanol, and commercially available lipase (Novozym®435) were carried out, with four process parameters being varied: Enzyme load, reaction time, substrate ratio of glycerol to oil, and solvent amount. Response surface methodology was applied to optimize the reaction system based on the experimental data achieved. MAG, DAG, and TAG contents, measured after a selected reaction time, were used as model responses. Well-fitting quadratic models were obtained for MAG, DAG, and TAG contents as a function of the process parameters with determination coefficients (R2) of 0.89, 0.88, and 0.92, respectively. Of the main effects examined, only enzyme load and reaction time significantly influenced MAG, DAG, and TAG contents. Both enzyme amount and reaction time showed a surprisingly nonlinear relationship between factors (process parameters) and responses, indicating a local maximum. The substrate ratio of glycerol to oil did not significantly affect the MAG and TAG contents; however, it had a significant influence on DAG content. Contour plots were used to evaluate the optimal conditions for the complex interactions between the reaction parameters and responses. The optimal conditions established for MAG yield were: enzyme load, 18% (w/w of oil); glycerol/oil ratio, 7∶1 (mol/mol); solvent amount, 500% (vol/wt of oil); and reaction time, 115 min. Under these conditions, a MAG content of 76% (w/w of lipid phase) was predicted. Verification experiments under optimized reaction conditions were conducted, and the results agreed well with the range of predictions.  相似文献   

13.
响应面优化酶法提取紫菜多糖工艺研究   总被引:1,自引:0,他引:1  
刘敏  张淑平 《陕西化工》2014,(3):468-471,475
利用纤维素酶辅助提取紫菜多糖,以酶添加量、提取温度、提取时间和pH作为响应面设计的变量.结果表明,纤维素酶辅助提取紫菜多糖的优化工艺条件为:酶添加量1.5%,提取温度51℃,pH 5.0,提取时间为80 min,在此条件下,多糖得率为19.46%.  相似文献   

14.
Biodegradable plastics were produced from sweet potato pulp (SPP) and cationic starch (CS) or chitosan composite (CC) by compression molding and their mechanical properties were tested. A universal testing machine, Rockwell hardness tester, and Izod impact tester were used for testing the mechanical properties (flexural strength, Rockwell hardness, and Izod strength) of the plastics. A central composite second‐order design was used to study the effects of temperature, time, and moisture content on the flexural strength, Rockwell hardness, and Izod strength of SPP/CS and SPP/CC blended plastics. The flexural strength, Rockwell hardness, and Izod strength of SPP‐based plastics was 101.1–305.9 kg/cm2, R29.0–R96.7, and 0.6–3.0 kg cm cm?2, respectively. Regression analysis predicted the optimal mechanical properties (flexural strength, Rockwell hardness, and Izod strength) to be attained with a 150–160°C temperature, 15–20‐min reaction time, and 20–23% moisture content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 423–434, 2002  相似文献   

15.
以实验室自制的牛皮胶原蛋白为原料,探讨复合酶提取牛皮胶原多肽的工艺。以牛皮胶原蛋白的水解度为评价指标,确定木瓜蛋白酶和胰蛋白酶的添加顺序和添加比例,同时单因素法获取酶解工艺参数的优化区间,响应面法优化复合酶酶法提取胶原多肽的工艺参数,实验结果表明,从牛皮胶原蛋白中提取胶原多肽的最优条件为:木瓜蛋白酶和胰蛋白酶按酶活力比3:1同时添加,加酶量650u/ml,酶解介质pH7.0,酶解温度50℃,酶解时间7h,在此工艺条件下得到的牛皮胶原蛋白的水解度可达到32.02%。  相似文献   

16.
采用单因素考察和响应面分析法相结合,对高压下苯胺、CS2和硫磺合成2-巯基苯并噻唑的工艺条件进行优化。首先单因素考察法优化了搅拌、催化剂两个因素,再采用响应面分析法对升温速率、保温时间、原料配比3个关键因素进行优化分析,得到了合成2-巯基苯并噻唑的收率计算模型,并得到合成优化条件:反应在高温高压无搅拌条件下,以水杨酸为催化剂,水杨酸用量为苯胺质量的5%,原料摩尔配比为n(苯胺)∶n(S)∶n(CS2)=1∶1.05∶1.11,升温速率为1.93℃/min,保温时间为2.0 h,2-巯基苯并噻唑收率高达92.08%,使得反应时间缩短1.0 h,升温速率降低了0.77℃/min,收率提高了6.2%。  相似文献   

17.
响应面法优化微波辅助合成中碳链甘油三酯工艺   总被引:4,自引:3,他引:1       下载免费PDF全文
凌慧  郑成  毛桃嫣  魏渊  刘颖 《化工学报》2016,67(Z2):231-244
以对甲苯磺酸为催化剂,在微波环境下合成辛酸癸酸甘油三酯,并利用响应面法优化辛酸癸酸甘油三酯的合成过程条件。首先,通过单因素灵敏度分析法对催化剂的选择、酸/醇摩尔比、反应温度、微波功率、催化剂用量、反应时间6个因素进行实验考察,确定了酸/醇摩尔比、反应温度、催化剂用量3个关键因素的优化值及取值范围。采用中心组合设计原则对3个关键因素进行实验设计。以产品羟值为响应值,基于响应实验结果,利用响应面法对实验结果进行了方程回归,得到3个关键因素与响应值的二次关联模型。通过方差分析和平行实验,证明该模型准确可用。确定了中碳链甘油三酯(MCTs)最佳合成条件为:酸/醇摩尔比为3.33:1,反应温度为190℃,催化剂用量为甘油质量的4.30%,微波功率为500 W,反应时间为3 h,得到产品羟值为1.12 mg KOH·g-1,酯化率高达99.7%,与理论预测值基本相符。与传统加热方式对比,微波辅助合成MCT大大缩短了反应时间。测定了精制提纯后MCT产品的各项物化性能指标,均已达到企业标准。通过红外光谱表征和GC/MS进一步表征产物结构和混合物油脂的组成,甘油三酯得率达到95.7%。  相似文献   

18.
In order to recovery whey protein from yak whey wastewater effectively, a facile method of foam separation to be suitable for the local nomadic herdsmen in Qinghai-Tibet Plateau has been established in this research. The effects of the four factors, protein concentration, gas velocity, temperature and pH, on the performance of foam separation were investigated. Based on the single factor experiments, the response surface software was adopted to optimize and to investigate conditions of foam separation for whey protein, and the optimal conditions were found to be protein concentration of 120 μg/mL, gas velocity of 310 mL/min, temperature of 41°C and pH of 3.8, respectively. The as-obtained results of verification experiments, recovery percentage 88.3% and enrichment ratio 9.25 showed that foam separation technique was a simple equipment and environmental compatibility method to separate whey protein from yak whey wastewater.  相似文献   

19.
以鹿茸中下段胶原蛋白为酶解底物,用木瓜蛋白酶酶解制备小分子抗氧化肽,以清除1,1-二苯基-2-苦基肼基(DPPH?)自由基的能力为指标,采用响应面法优化酶水解条件。结果表明,最优实验条件为时间56 min,酶添加量1.40wt%,pH=5.60,温度60℃。该条件下所得抗氧化肽对DPPH?自由基的清除率为83.09%。用超滤膜、半制备色谱柱和超高效液相色谱?质谱联用仪分级分离获得分子量0.2?0.6 kDa的具有最高抗氧化活性的多肽,其具有与头段类似的保健功效,更易被人体吸收,且易进一步加工和储存。  相似文献   

20.
Biodegradation of phenol was studied using Pseudomonas pictorum (NCIM 2077) immobilized on alginate and activated carbon – alginate beads. Control experiments were also performed using free cells and non‐inoculated activated carbon – alginate beads. The entrapped alginate and activated carbon – alginate beads suffer from a concentration gradient for oxygen in the interior of the beads and hence free cells showed better degradation at lower concentrations of phenol. The results on entrapped alginate beads were modeled using response surface methodology which determines the dependency of the maximum percentage of phenol degraded as a function of the independent variables, namely initial phenol concentration, initial pH, temperature, and diameter of the immobilized beads. The predicted values are in close agreement with the experimental values with the coefficient of correlation equal to 0.9999 and 0.9993 for both P pictorum – alginate beads and activated carbon – P pictorum – alginate beads respectively. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号