共查询到20条相似文献,搜索用时 0 毫秒
1.
Teager能量算子追踪并计算信号的瞬时能量,在检测信号冲击特征方面具有独特优势,已广泛运用于轴承的故障检测,但尚未见其在列车轮对轴承声音信号分析中的运用。为此,提出一种基于Teager能量算子解调的轮对轴承故障检测方案,首先介绍Teager能量算子的概念及解调原理,利用该方法对型号为197726TN的轮对故障轴承服役过程中采集的声音信号进行分析,通过Teager能量算子解调得到信号的瞬时能量波形,再对其进行包络谱分析得到包络谱,进行轴承故障识别。与常规的Hilbert解调方法对比,可知Teager能量算子解调法能更加有效地突显故障信号特征并确定故障类型,其在轮对轴承声音信号故障检测上的优势得到验证。 相似文献
2.
3.
4.
5.
6.
针对复杂生产背景下产生的强噪声淹没齿轮有效故障特征信息的问题,利用Autogram方法对其进行特征提取。该方法利用最大重叠离散小波包变换,对齿轮断齿故障振动信号进行不同层数分解处理,每层得到若干个信号,被称为“node”。为了更加全面地描述故障特征信息,对每个node进行包络谱的3种无偏自相关谱峭度求取,以便选取合适node作为信号源进行下一步分析。最后,对该信号源引入阈值处理,以便加强频谱分析的全面性,实现对齿轮断齿故障特征信息的有效提取。通过对比分析仿真和实测齿轮故障振动信号,验证了该方法的有效性。 相似文献
7.
1.5维谱因具有抗高斯白噪声的优异性能而被广泛应用于故障诊断领域,能量算子解调与1.5维谱相结合形成的1.5维能量谱用于轴承故障诊断效果更佳,然而该方法处理低信噪比信号效果不佳.针对强背景噪声下微弱故障特征提取难的问题,提出最小熵解卷积(MED)与1.5维能量谱相结合的诊断方法.先用MED对原始振动信号进行消噪,再对处... 相似文献
8.
频率加权能量算子(FWEO)能够通过对信号瞬时能量的追踪消除信号中的噪声分量,突出故障冲击分量,对于轴承信号的处理具有较强的抗干扰性,然而对强噪声干扰下的信号则效果不够理想。针对该问题,提出将最小熵解卷积(MED)用于信号的预处理,以此消除信号采样过程中的传递噪声干扰,增强信噪比;而后以FWEO对处理后信号的瞬时能量进行追踪,从能量的角度进行故障特征的二次增强;最后通过包络谱分析获得诊断结果。仿真数据、实验室数据均表明所提方法能够在受强噪声干扰下的轴承故障信号中大幅消除噪声,准确提取出故障分量。 相似文献
9.
针对轴承微弱故障时冲击信号含有大量噪声且难以提取故障特征频率问题,提出了一种基于奇异值分解(SVD)和变分模态分解(VMD)的轴承故障特征提取方法.该方法先对原始信号进行SVD去噪;再对去噪信号进行VMD分解,得到各个本征模态函数(IMF),根据最大中心频率原则和各个本征模态与去噪信号的相关系数差值确定分解个数,通过加... 相似文献
10.
11.
12.
针对炼铁厂复杂生产环境,齿轮箱轴承保持架故障特征信息提取困难的问题,提出了一种基于优化变分模态分解参数的故障特征提取方法.首先,采用改进的遗传算法(GA)对变分模态分解(VMD)算法的模态分量个数K与惩罚因子α两个参数进行优化选取,提高分解效果;其次,利用参数优化后的变分模态分解处理信号数据,获得K个模态分量,依据最大... 相似文献
13.
用小波包分解(Wavelet Packet Decomposition,WPD)处理低信噪比信号时,常出现残存大量带内噪声的问题,严重影响了后期的故障诊断准确性。针对该问题,提出将频率加权能量算子(Frequency-Weighted Energy Operator,FWEO)作为小波包分解的后处理器,以消除其带内噪声,增强故障特征提取效果。对采样获得的故障数据进行3层小波包分解,得到各频带系数;对每个频带系数进行峭度计算,以峭度最大原则获取最优频带系数;以频率加权能量算子追踪最优频带系数的瞬时能量,从信号能量的角度消除信号中的带内噪声成分,二次增强信号中隐藏的故障脉冲信息;对其进行包络谱分析,得到最终诊断结果。仿真数据、实验室数据和工程数据验证了所提方法的有效性和实用性。 相似文献
14.
运用有限元软件ABAQUS对薄壁件的实际加工过程进行了模拟三维仿真,研究了多点柔性工装系统支撑单元的密度、间距和吸附装置吸附力对薄壁件加工变形的影响。总结出3种因素对加工变形的影响规律以及为减少占用较多资源和调配时间最优的装夹布局,对多点柔性工装系统控制薄壁件的加工变形问题给出了建议。 相似文献
15.
16.
针对多点最优最小熵反卷积调整(MOMEDA)在提取故障脉冲时无法自适应地识别故障脉冲周期和滤波器长度的不足,提出包络谐噪比(EHNR)与PSO-MOMEDA相结合的滚动轴承故障特征提取方法.首先,计算原始信号的EHNR函数图,自适应计算脉冲周期;其次,以脉冲信号EHNR值为优化目标,使用PSO-MOMEDA搜索最优滤波... 相似文献
17.
针对往复压缩机气阀振动信号非线性及非平稳性特征,提出一种基于灰狼算法优化平滑先验分析(SPA),并结合多尺度样本熵的往复压缩机气阀故障特征提取方法。以多尺度样本熵均值和偏度的平方作为适应度函数,利用灰狼算法对SPA的参数λ进行寻优,将寻优后的参数λ代入SPA中对往复压缩机气阀处振动加速度信号进行自适应分解,得到信号的趋势项和去趋势项;然后分别求取去趋势项数据的多尺度样本熵均值和偏度的平方,以此作为往复压缩机气阀信号的特征向量输入支持向量机中进行训练与测试。实验结果表明,该方法可以有效提取往复压缩机气阀的故障特征。 相似文献
18.
针对强噪声干扰下滚动轴承故障特征难以提取的问题,提出一种变分模态分解和Teager能量增强谱的滚动轴承故障诊断方法。该方法首先通过变分模态分解(Variational Mode Decomposition,VMD)将非平稳的轴承故障振动信号分解成一系列平稳的窄带分量;然后根据峭度-相关性最大准则挑选包含故障特征信息最丰富的窄带分量作为主分量;最后对选取的主分量进行Teager能量增强谱,提取滚动轴承的故障特征。通过仿真和实例分析的结果表明:该方法能有效地提取出滚动轴承早期故障特征,且能够抑制强烈的噪声干扰和增强故障冲击特征,优于传统包络谱分析和基于经验模态分解(Empirical Mode Decomposition,EMD)和Teager能量谱的方法的分析结果。 相似文献
19.
针对齿轮箱轴承信号非平稳性及其故障特征难以提取的问题,提出一种自适应白噪声平均总体经验模态分解(CEEMDAN)能量熵和马氏距离相结合的故障诊断方法。首先采用CEEMDAN方法对非平稳的轴承故障信号进行分解,获得若干阶表征信号特性的固有模态函数(IMF)分量;然后计算各IMF分量的自相关函数和相关系数,以滤除信号内的噪声干扰和对故障特征不敏感的IMF分量;最后计算各敏感故障特征分量的能量熵,将其作为特征参数形成状态特征向量,并使用马氏距离判别方法对轴承的工作状态和故障类型进行诊断。通过对实测不同工况以及不同故障程度的齿轮箱轴承信号的分析,证明了所提方法的有效性。 相似文献
20.
针对强噪声下微小故障信号容易被噪声淹没的问题,提出基于最大二阶循环平稳盲解卷积(CYCBD)和自适应噪声完全集合经验模态分解(CEEMDAN)的轴承微小故障诊断方法。根据故障频率公式求出振动信号的故障频率,并根据故障频率设置对应的循环频率集,用CYCBD对原信号进行滤波,使信号中的周期冲击成分更加突出,从而达到提高信噪比的目的;对处理后的信号进行CEEMDAN,得到一系列模态分量,再求各模态分量的峭度值,从中选取峭度值高的即含有较多故障特征的若干分量进行重构;对重构后的信号求其Hilbert包络谱,从中提取故障频率。采用仿真信号与西储大学轴承数据集进行仿真与实验研究,验证所提方法的有效性。 相似文献