共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
为识别数控机床运行过程中滚动轴承的运行状态,提高滚动轴承的故障状态诊断正确率,提出了一种基于小波包分解的改进遗传算法优化BP神经网络的滚动轴承故障识别方法。以滚动轴承的4种故障状态为研究对象,通过小波包分解振动信号,得到敏感特征向量;针对BP神经网络的缺点,运用改进遗传算法优化BP神经网络的阈值和权值,实现最优训练,建立更精确的滚动轴承IGA-BP状态预测模型。结果表明:IGA-BP预测模型收敛速度更快,预测准确率更高,证明了所提方法的有效性。 相似文献
3.
针对滚动轴承寿命状态识别过程中,单一传感器蕴含的信息不能全面反映寿命状态的问题,文章提出了一种基于信息融合的滚动轴承寿命状态识别方法。该方法首先采用多路卷积层提取不同传感器的数据特征信息,克服单一信息源的局限性;然后采用多层卷积、池化交替级联的方式,实现多源信息的特征值深度融合,最后采用全连接和多分类函数,实现动轴承的寿命状态识别。通过不同方法的对比实验,结果表明了所提方法能够提高滚动轴承寿命状态识别率,具有较好的可行性。 相似文献
4.
提出了基于时频分析的滚动轴承故障特征诊断的方法。利用伪Wigner—Ville分布建立滚动轴承故障信息时频分布图谱,从而有效地识别滚动轴承不同的故障模式,为滚动轴承的故障模式识别提供了切实可行的方法。 相似文献
5.
6.
7.
滚动轴承的早期故障预警一直是研究人员和相关行业关注的问题,及时发现滚动轴承的早期故障并预警有助于降低生产中因零件损坏引发的损失。在分析了主流故障预警方法后提出一种基于高斯混合模型(gaussian mixture model, GMM)的轴承故障预警方法;通过GMM对轴承的振动信号建模,描述其不同阶段的分布情况,提出一种新的基于KL散度的轴承健康指标(bearing health index based on KL divergence, BHI-KL),用来描述轴承劣化过程;利用3σ准则提取出健康指标中的异常值,实现故障预警。利用轴承寿命加速试验数据对所提方法进行验证,并通过包络谱验证其精确性。结果表明,该方法较常用的故障特征具有良好的时效性,可以实现对轴承故障进行有效预警。 相似文献
8.
矿用电机运行过程中环境噪声强且复杂,其滚动轴承的早期故障特征容易被淹没。提出一种有限包络谱熵(LESE)引导的振动信号奇异值分解方法,用于滚动轴承早期故障特征提取。根据待分解信号中频率和奇异值之间的对应关系,将对应同一振动信号成分的奇异分量进行累加作为一个信号子分量进行输出;提出LESE用来解决轴承微弱故障信号经SVD处理后故障敏感信号分量的筛选;最后通过对故障敏感信号分量进行包络谱分析从而确定滚动轴承的故障类型。实验结果表明:上述方法能够实现对轴承早期故障特征提取,有利于及时发现轴承问题,避免设备进一步劣化。 相似文献
9.
针对传统故障特征提取过程复杂、诊断方案单一且准确性差等问题,提出了基于多阈值小波包和深度置信网络(DBN)的轴承故障识别方案。本文作者采用最优小波基函数和软硬阈值结合方法对原始振动信号进行三层分解降噪处理,得到8个从低频到高频段的信号成分,对其进行组合重构作为神经网络的输入样本;通过DBN在数据处理上的特征重构优势,建立了DBNBP神经网络的轴承故障识别模型,确定模型的各类参数。经多次实验,探究不同样本输入对模型识别率的影响,并与传统的浅层神经网络识别模型做对比分析,结果表明:经训练的DBNBP轴承故障识别模型可从原始数据、小波包分解信号实现轴承故障信号的准确特征学习和分类,结合识别率和诊断时间考虑,经小波包分解信号输入具有更优的诊断效率。 相似文献
10.
针对传统的轴承故障诊断过于依赖专家经验和故障特征提取困难的现状,同时为了适应故障诊断的大数据处理及实时监测的需求,提出了一种基于变分模态分解(variational mode decomposi-tion,VMD)与发育神经网络(developmental neural network,DNN)相结合的故障诊断方法.先... 相似文献
11.
12.
13.
14.
15.
基于小波包和支持向量机的滚动轴承故障模式识别 总被引:2,自引:1,他引:2
为了解决对故障轴承的特征提取和故障特征准确分类问题,提出了应用小波包变换和支持向量机相结合进行滚动轴承故障诊断的方法.小波包变换具有良好的时-频局部化特征,非常适于对瞬态或时变信号进行特征提取.而支持向量机可完成模式识别和非线性回归.利用上述原理根据轴承振动信号的频域变化特征,采用小波包变换对其提取频域能量特征向量,然后利用建立的支持向量机多故障分类器完成滚动轴承故障模式的识别.试验结果表明,支持向量机可以有效、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新的途径. 相似文献
16.
对工业设备中的滚动轴承进行故障诊断时,被测信号经常受到高频噪声和间歇噪声的干扰,导致信号分解和特征提取的精度较低。为解决此问题,提出一种基于总变差降噪(TVD)和改进的局部均值分解(LMD)的方法。采取总变差方法对信号进行降噪处理,选取合适的正则化参数,使得降噪后的信号在具有高信噪比的同时具有较低的均方根误差。对降噪后的信号进行局部均值分解,根据互相关系值和峭度选取最佳的PF分量,进行包络分析,实现对故障特征的提取。对实测信号进行实验验证。结果表明:所提方法可以达到有效的降噪效果,能准确提取复杂振动信号中的故障特征。 相似文献
17.
针对研究振动信号分析识别轴承状态的方法,在实践应用中受到各种噪声的影响很难达到准确识别预期目标的效果,提出了基于VMD能量熵特征与PNN神经网络结合的分类滚动轴承故障状态的方法。首先,通过运用变分模态分解(VMD)的信号预处理方法,实现振动信号的VMD降噪,同时利用集合经验模态分解(EEMD)对仿真信号进行对比两种方法的分解效果;然后,通过VMD能量熵和时域特征组成特征向量。最后,特征向量导入概率神经网络模型中准确识别滚动轴承故障状态。结果表明,该方法能将非平稳振动信号分解有效降噪且抑制模态混叠现象,同时能有效识别故障状态,对于在线监测机床健康状态领域的发展有重大的意义。 相似文献
18.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。 相似文献
19.
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。 相似文献
20.
在对集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)进行研究之后,提出了一种利用改进的EEMD进行滚动轴承故障特征提取的方法。该方法根据EEMD的分解过程中信号和加入的白噪声的特点来选择EEMD的参数,并且对分解后所得到的的固有模态函数(IMF)分量进行阈值处理后再重构,以降低噪声的干扰。对重构后的信号进行包络谱分析,提取其故障特征,最后将该方法与通用的EEMD方法进行对比,研究结果表明EEMD是一种很有效的滚动轴承故障特征提取方法。 相似文献