共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
一种基于规则的模式分类器设计方法 总被引:1,自引:0,他引:1
针对复杂场景下的模式分类问题,该文提出了一种基于规则的模式分类器设计方法。其基本思想是:首先运用非参数统计方法建立描述样本特征分布的规则集;然后构造一种链式结构将规则集中的元素组织起来,形成模式分类器;最后在以训练样本识别结果为指导的前提下,优化规则集的制定方法和分类器结构。该设计方法的有效性在某对海监视雷达目标识别实验中得到了验证。 相似文献
4.
5.
数据挖掘是在数据中发现隐藏的结构和模式。但发现的许多模式对用卢来说可能是已知的,从而使这些模式毫无意义,毫无兴趣性。文献中多强调分类规则的准确性和可理解性,但发现兴趣规则在数据挖掘算法中依然是一个令人生畏的挑战。本文采用一种遗传数据挖掘方法,在分类规则产生的同时对其兴趣性进行度量,直接产生兴趣规则。实验表明该方法是可行的、高效的。 相似文献
6.
产生式方法和判别式方法是解决分类问题的两种不同框架,具有各自的优势。为利用两种方法各自的优势,文中提出一种产生式与判别式线性混合分类模型,并设计一种基于遗传算法的产生式与判别式线性混合分类模型的学习算法。该算法将线性混合分类器混合参数的学习看作一个最优化问题,以两个基分类器对每个训练数据的后验概率值为数据依据,用遗传算法找出线性混合分类器混合参数的最优值。实验结果表明,在大多数数据集上,产生式与判别式线性混合分类器的分类准确率优于或近似于它的两个基分类器中的优者。 相似文献
7.
基于规则分类算法提取的规则集通常存在3个问题:首先,提取的分类规则集中短规则过少,致使高质量的规则不多;其次,规则集中规则数量少,训练数据中几乎所有实例仅被规则覆盖一次;第三,虽然提取大量的规则,但是训练数据中存在一些小类样本的实例不能被任何一条规则覆盖。本文提出一种改进的基于规则的实例多覆盖分类算法(Rule-based classification with instances covered by multiple rules, RCIM),其特点是:(1)为了提高规则的质量,在选择生成规则的第1项时不仅考虑属性值的好坏,而且还考虑了属性值补的好坏;(2)一次产生尽量多,高质量的规则,而且当训练数据的实例至少被两条规则覆盖后才将其删除;(3)当遇上难以判断的测试数据时,对测试数据的各个属性值进行二次学习提取规则。算法RCIM不仅可以有效地提取大量的规则,而且较大程度地提高了规则的质量。通
过在大量数据上实验结果表明,RCIM比许多其他算法取得了更高的分类准确率。 相似文献
8.
9.
10.
11.
一种基于遗传算法的关联规则挖掘方法 总被引:3,自引:0,他引:3
彭建 《计算技术与自动化》2005,24(2):75-77
根据关联规则挖掘的要求与特点,结合遗传算法的思想,提出了一个基于遗传算法的关联规则挖掘方法,并通过实例分析,说明是一种具有实用价值的方法。 相似文献
12.
13.
该文结合具体的学生信息数据库,把遗传算法理论应用到关联规则的数据挖掘中。通过特定的编码设计,适应度函数构造。数据库处理,遗传算法的参数设置,得到有用的规则,有助于教师对学生的科学管理和指导,提高教学的质量和素质,为其余课程或学生数据库的挖掘起到抛砖引玉的作用。 相似文献
14.
该文结合具体的学生信息数据库,把遗传算法理论应用到关联规则的数据挖掘中。通过特定的编码设计,适应度函数构造,数据库处理,遗传算法的参数设置,得到有用的规则,有助于教师对学生的科学管理和指导,提高教学的质量和素质,为其余课程或学生数据库的挖掘起到抛砖引玉的作用。 相似文献
15.
针对传统的遗传算法容易导致算法的过早收敛而陷于局部最优困境,或收敛时间过长而消耗大量的搜索时间的缺陷,该文提出了一种改进的遗传算法,该算法采用一种自适应变异率和改进的个体选择方法,并且将这种改进遗传算法应用于关联规则的挖掘,实验结果证明这种算法是有效的。 相似文献
16.
分类器设计是模式识别系统中的关键步骤之一。在目前的许多设计方法中,分类器大多采用的是单层结构,即直接将输入模式映射为识别出来的结果,这类结构虽然简单直观,但是往往难于发挥分类器设计算法的最大性能。文中从分类器的结构方面考虑,提出了一种基于覆盖算法的两层结构分类器的设计方法,并且与单层结构分类器做了实验分析对比,得出了在不明显增加构造复杂度的情况下两层结构的设计大大改善了分类器的性能。 相似文献
17.
列车停站方案影响着旅客服务质量和运行效率,是列车开行方案的重要环节.本文建立了旅客列车停站方案的多目标规划模型以最大化区段可达性从而减少旅客旅行时间.针对传统的粒子群优化算法在处理复杂多维问题时,算法效率不高,易陷进局部最优,且无法有效处理离散问题等缺点,提出了一种将量子遗传算法引入到MPSO中的方法.算法整体采用粒子群算法,结合量子遗传算法的概率幅编码,并使用粒子群的速度更新公式来更新量子旋转门.算法引入量子遗传算法的全局探索和粒子群算法的种群智能体系,不仅提高了算法的收敛速度,同时增加了粒子多样性.最后,将改进的量子遗传粒子群算法(QGA_PSO)应用于ZDT函数优化和停站方案模型优化,证明了算法的有效性. 相似文献
18.
19.
阐述了传统遗传算法的基本思想、原理和步骤及其在数据挖掘(规则集发现)中的应用,给出了基于遗传算法的知识规则挖掘算法的基本思想和关键问题,包括知识规则表示、适应度函数定义等,继而提出多种群并行进化结构,利用精英重组策略,产生池进化模型以及自适应参数的手段调整并行遗传算法进行数据挖掘。在算法具体实现过程中,采用了动态变异交叉概率等方法,有效避免了并行遗传算法中早熟现象的发生。以北美香菇数据为例,进行并行遗传算法挖掘分类规则,实验说明了该算法在发现和进化规则方面的有效性。 相似文献