共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Heat and Mass Transfer》2007,50(9-10):2002-2018
The behaviour of nanofluids is investigated numerically inside a two-sided lid-driven differentially heated square cavity to gain insight into convective recirculation and flow processes induced by a nanofluid. A model is developed to analyze the behaviour of nanofluids taking into account the solid volume fraction χ. The transport equations are solved numerically with finite volume approach using SIMPLE algorithm. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. The left and the right moving walls are maintained at different constant temperatures while the upper and the bottom walls are thermally insulated. Three case were considered depending on the direction of the moving walls. Governing parameters were 0.01 < Ri < 100 but due to space constraints only the results for 0.1 < Ri < 10 are presented. It is found that both the Richardson number and the direction of the moving walls affect the fluid flow and heat transfer in the cavity. Copper–Water nanofluid is used with Pr = 6.2 and solid volume fraction χ is varied as 0.0%, 8%, 16% and 20%. Detailed results are presented for flow pattern and heat transfer curves. 相似文献
2.
S.M. Peyghambarzadeh S.H. Hashemabadi S.M. Hoseini M. Seifi Jamnani 《International Communications in Heat and Mass Transfer》2011,38(9):1283-1290
Traditionally forced convection heat transfer in a car radiator is performed to cool circulating fluid which consisted of water or a mixture of water and anti-freezing materials like ethylene glycol (EG). In this paper, the heat transfer performance of pure water and pure EG has been compared with their binary mixtures. Furthermore, different amounts of Al2O3 nanoparticle have been added into these base fluids and its effects on the heat transfer performance of the car radiator have been determined experimentally. Liquid flow rate has been changed in the range of 2–6 l per minute and the fluid inlet temperature has been changed for all the experiments. The results demonstrate that nanofluids clearly enhance heat transfer compared to their own base fluid. In the best conditions, the heat transfer enhancement of about 40% compared to the base fluids has been recorded. 相似文献
3.
E. Abu-Nada Z. Masoud A. Hijazi 《International Communications in Heat and Mass Transfer》2008,35(5):657-665
Heat transfer enhancement in horizontal annuli using nanofluids is investigated. Water-based nanofluid containing various volume fractions of Cu, Ag, Al2O3 and TiO2 nanoparticles is used. The addition of the different types and different volume fractions of nanoparticles were found to have adverse effects on heat transfer characteristics. For high values of Rayleigh number and high L/D ratio, nanoparticles with high thermal conductivity cause significant enhancement of heat transfer characteristics. On the other hand, for intermediate values of Rayleigh number, nanoparticles with low thermal conductivity cause a reduction in heat transfer. For Ra = 103 and Ra = 105 the addition of Al2O3 nanoparticles improves heat transfer. However, for Ra = 104, the addition of nanoparticles has a very minor effect on heat transfer characteristics. 相似文献
4.
Heat transfer in an annular gap 总被引:1,自引:0,他引:1
Heat-transfer coefficients were measured for the flow in the annular space between an inner rotating cylinder and an outer stationary one, with superimposed axial flow. The problem was stimulated by the desire for additional information on the design of cooling systems for electric motors of high power density. The speeds of rotation were such as to include Taylor numbers up to about 106, and the range of Reynolds numbers based on the axial velocity components and the gap distance were extended to 7000. Experiments were performed at three different Prandtl numbers 2.5, 4.5 and 6.5. 相似文献
5.
S. Sanitjai 《International Journal of Heat and Mass Transfer》2004,47(22):4785-4794
Local heat transfer by forced convection from a circular cylinder in crossflow is investigated for Reynolds number from 2 × 103 to 9 × 104 and Prandtl number from 7 to 176. The working fluids are water and mixtures of ethylene glycol and water. The cylinder is uniformly heated by passing a direct electric current through a thin surface heater. The influence of Reynolds number and Prandtl number on the distributions of local Nusselt number around a circular cylinder in crossflow is described. 相似文献
6.
Nanofluids, particularly water‐based nanofluids, have been extensively studied as liquid–solid phase change materials (PCMs) for thermal energy storage (TES). In this study, nanofluids with aqueous ethylene glycol (EG) solution as the base fluid are proposed as a novel PCM for cold thermal energy storage. Nanofluids were prepared by dispersing 0.1–0.4 wt% TiO2 nanoparticles into 12, 22, and 34 vol.% EG solutions. The dispersion stability of the nanofluids was evaluated by Turbiscan Lab. The liquid–solid phase change characteristics of the nanofluids were also investigated. Phase change temperature (PCT), nucleation temperature, and half freezing time (HFT) were investigated in freezing experiments. Subcooling degree and HFT reduction were then calculated. Latent heat of solidification was measured using differential scanning calorimetry. Thermal conductivity was determined using the hot disk thermal constant analyzer. Experimental results show that the nanoparticles decreased the PCT of 34 vol.% EG solution but minimally influenced the PCT of 12 and 22 vol.% EG solutions. For all nanofluids, the nanoparticles decreased the subcooling degree, HFT, and latent heat but increased the thermal conductivity of the EG solutions. The mechanism of the improvement of the phase change characteristics and decrease in latent heat by the nanoparticles was discussed. The nanoparticles simultaneously served as nucleating agent that induced crystal nucleation and as impurities that disturbed the growth of water crystals in EG solution‐based nanofluids. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
《International Journal of Heat and Mass Transfer》1986,29(6):831-839
Experiments have been performed to determine the heat transfer coefficients for arrays of shaft-attached, rotating annular fins. The experiments encompassed a wide range of rotational speeds and interfin spacings (including the limiting case of the single annular fin). The efficiency of the fins was equal to one. It was found that the fin heat transfer coefficient decreased with decreasing interfin spacing, the extent of the decrease being of major proportions at low rotational speeds but being quite moderate at high speeds. Thus, closely spaced fins can be used at high rotational speeds without a significant spacing-related decrease in the transfer coefficient, but at low speeds the fins must be farther apart to avoid overly low values of the coefficient. The heat transfer coefficient also decreased as the rotational speed decreased, with a particularly rapid dropoff at low speeds when the interfin spacing was small. For the most part, the fin heat transfer coefficients substantially exceeded those for an unfinned rotating shaft, thereby providing an incentive for finning. It was also found that at high rotational speeds, the heat transfer coefficient for a rotating disk served as a lower bound for the annular-fin heat transfer coefficients. To facilitate the use of the results for design, a correlation was developed which represents the fin heat transfer coefficient as a continuous function of the investigated independent parameters. 相似文献
8.
H.A. Mohammed P. GunnasegaranN.H. Shuaib 《International Communications in Heat and Mass Transfer》2010
The effect of using nanofluids on heat transfer and fluid flow characteristics in rectangular shaped microchannel heat sink (MCHS) is numerically investigated for Reynolds number range of 100–1000. In this study, the MCHS performance using alumina–water (Al2O3-H2O) nanofluid with volume fraction ranged from 1% to 5% was used as a coolant is examined. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The MCHS performance is evaluated in terms of temperature profile, heat transfer coefficient, pressure drop, friction factor, wall shear stress and thermal resistance. The results reveal that when the volume fraction of nanoparticles is increased under the extreme heat flux, both the heat transfer coefficient and wall shear stress are increased while the thermal resistance of the MCHS is decreased. However, nanofluid with volume fraction of 5% could not be able to enhance the heat transfer or performing almost the same result as pure water. Therefore, the presence of nanoparticles could enhance the cooling of MCHS under the extreme heat flux conditions with the optimum value of nanoparticles. Only a slight increase in the pressure drop across the MCHS is found compared with the pure water-cooled MCHS. 相似文献
9.
Tu-Chieh Hung Wei-Mon Yan Xiao-Dong Wang Chun-Yen Chang 《International Journal of Heat and Mass Transfer》2012,55(9-10):2559-2570
Heat transfer enhancement in a 3-D microchannel heat sink (MCHS) using nanofluids is investigated by a numerical study. The addition of nanoparticles to the coolant fluid changes its thermophysical properties in ways that are closely related to the type of nanoparticle, base fluid, particle volume fraction, particle size, and pumping power. The calculations in this work suggest that the best heat transfer enhancement can be obtained by using a system with an Al2O3–water nanofluid-cooled MCHS. Moreover, using base fluids with lower dynamic viscosity (such as water) and substrate materials with high thermal conductivity enhance the thermal performance of the MCHS. The results also show that as the particle volume fraction of the nanofluid increases, the thermal resistance first decreases and then increases. The lowest thermal resistance can be obtained by properly adjusting the volume fraction and pumping power under given geometric conditions. For a moderate range of particle sizes, the MCHS yields better performance when nanofluids with smaller nanoparticles are used. Furthermore, the overall thermal resistance of the MCHS is reduced significantly by increasing the pumping power. The heat transfer performance of Al2O3–water and diamond–water nanofluids was 21.6% better than that of pure water. The results reported here may facilitate improvements in the thermal performance of MCHSs. 相似文献
10.
《International Journal of Thermal Sciences》2007,46(1):1-19
Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension. This review summarizes recent research on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and identifies opportunities for future research. 相似文献
11.
Nanofluids are advanced fluids with novel properties useful for diverse applications in heat transfer. This article reports the experimental determination of thermal conductivity and viscosity for silica (SiO2) nanofluids in ethylene glycol (EG) and glycerol (G) as base fluids. A two-step method was applied to disperse the nanoparticles in the base fluids for the particle volume concentration of 0.5–2.0%. The dispersion stability of the nanofluids was evaluated by zeta potential analysis. All the measurements were performed in the temperature interval from 30 °C to 80 °C. It was found that the thermal conductivity increases with temperature. The SiO2-EG showed higher conductivity enhancement than SiO2-G nanofluids. Rheological analyses confirm Newtonian behavior for silica nanofluids within shear rate range of 20–100 s− 1. Viscosity decreases with an increase in operating temperature. The SiO2-EG demonstrated very weak temperature dependence compared to the SiO2-G nanofluids. Based on these measured properties, the criterion for heat transfer performance was determined. Furthermore, equations have been proposed with accuracy within ± 10% deviations to predict the thermal conductivity and dynamic viscosity of EG and G-based SiO2 nanofluids. 相似文献
12.
The increasing demand of nanofluids in industrial applications has led to increased attention from many researchers. In this paper, heat transfer enhancement using TiO2 and SiO2 nanopowders suspended in pure water is presented. The test setup includes a car radiator, and the effects on heat transfer enhancement under the operating conditions are analyzed under laminar flow conditions. The volume flow rate, inlet temperature and nanofluid volume concentration are in the range of 2–8 LPM, 60–80 °C and 1–2% respectively. The results showed that the Nusselt number increased with volume flow rate and slightly increased with inlet temperature and nanofluid volume concentration. The regression equation for input (volume flow rate, inlet temperature and nanofluid volume concentration) and response (Nusselt number) was found. The results of the analysis indicated that significant input parameters to enhance heat transfer with car radiator. These experimental results were found to be in good agreement with other researchers' data, with a deviation of only approximately 4%. 相似文献
13.
In the present study, the heat transfer characteristics of nanofluids cooling in the mini-rectangular fin heat sink are studied. The heat sinks with three different channel heights are fabricated from the aluminum by the wire electrical discharge machine with the length, width and base thickness of 110, 60, and 2 mm, respectively. The nanofluids are the mixture of de-ionized water and nanoscale TiO2 particles. The results obtained from the nanofluids cooling in mini-rectangular fin heat sink are compared with those from the de-ionized water cooling method. Effects of the inlet temperature of nanofluids, nanofluid Reynolds number, and heat flux on the heat transfer characteristics of mini-rectangular fin heat sink are considered. It is found that average heat transfer rates for nanofluids as coolant are higher than those for the de-ionized water as coolant. The results of this study are of technological importance for the efficient design of cooling systems of electronic devices to enhance cooling performance. 相似文献
14.
15.
Thermal performance of convective flow boiling heat transfer and particulate fouling of CuO/EG nanofluids has been experimentally studied inside the annular heat exchanger. CuO nanoparticles were well-dispersed and stabilized using a new combinational method (adding surfactant, stirring, pH control and sonication) in ethylene glycol (EG) as the base fluid in different weight fractions of nanoparticles (0.1–0.4%). Despite stabilizing the nanofluids, a considerable boiling heat transfer reduction due to the fouling resistance has been reported. Subsequently, scale formation and particulate fouling of nanofluids in term of fouling resistance has experimentally been investigated. Influences of operating parameters on the fouling resistance and heat transfer coefficient are investigated and briefly discussed. 相似文献
16.
Gabriela Huminic Angel Huminic 《International Journal of Heat and Mass Transfer》2011,54(19-20):4280-4287
In the present work a three-dimensional analysis is used to study the heat transfer characteristics of a double-tube helical heat exchangers using nanofluids under laminar flow conditions. CuO and TiO2 nanoparticles with diameters of 24 nm dispersed in water with volume concentrations of 0.5–3 vol.% are used as the working fluid. The mass flow rate of the nanofluid from the inner tube was kept and the mass flow rate of the water from the annulus was set at either half, full, or double the value. The variations of the nanofluids and water temperatures, heat transfer rates and heat transfer coefficients along inner and outer tubes are shown in the paper. Effects of nanoparticles concentration level and of the Dean number on the heat transfer rates and heat transfer coefficients are presented. The results show that for 2% CuO nanoparticles in water and same mass flow rate in inner tube and annulus, the heat transfer rate of the nanofluid was approximately 14% greater than of pure water and the heat transfer rate of water from annulus than through the inner tube flowing nanofluids was approximately 19% greater than for the case which through the inner and outer tubes flow water. The results also show that the convective heat transfer coefficients of the nanofluids and water increased with increasing of the mass flow rate and with the Dean number. The results have been validated by comparison of simulations with the data computed by empirical equations. 相似文献
17.
B. Farajollahi S.Gh. Etemad M. Hojjat 《International Journal of Heat and Mass Transfer》2010,53(1-3):12-17
Heat transfer characteristics of γ-Al2O3/water and TiO2/water nanofluids were measured in a shell and tube heat exchanger under turbulent flow condition. The effects of Peclet number, volume concentration of suspended nanoparticles, and particle type on the heat characteristics were investigated. Based on the results, adding of naoparticles to the base fluid causes the significant enhancement of heat transfer characteristics. For both nanofluids, two different optimum nanoparticle concentrations exist. Comparison of the heat transfer behavior of two nanofluids indicates that at a certain Peclet number, heat transfer characteristics of TiO2/water nanofluid at its optimum nanoparticle concentration are greater than those of γ-Al2O3/water nanofluid while γ-Al2O3/water nanofluid possesses better heat transfer behavior at higher nanoparticle concentrations. 相似文献
18.
Ahmed T. Al-Sammarraie 《Numerical Heat Transfer, Part A: Applications》2017,72(3):197-214
Forced convection in a combined entry developing length of a convergent pipe under constant wall heat flux boundary condition is performed in this work. Influences of the convergence angle, Reynolds, and Prandtl numbers on the heat transfer and flow field have been investigated. The numerical results are obtained for a wide range of convergence angles (0°–25°), Reynolds numbers (700–2100), and Prandtl numbers (0.707, 5.83). Compared to a traditional pipe, a substantial increase in heat transfer has been achieved with an increase in the pressure drop as the convergence angle increases. In this work, the effect of convergence angle, Reynolds number, and Prandtl number on the overall flow and thermal performance for the aforementioned configuration is investigated. To the best of authors’ knowledge, this investigation has been done for the first time, and it provides new and significant information regarding heat transfer enhancement utilizing a convergent pipe. 相似文献
19.
This paper considers experimental investigations on a hybrid microchannel solar cell, which is designed as an attractive technology for PV cooling systems. The proposed unit combines two elements: a microchannel and a photovoltaic–thermal module. Experiments were performed at indoor condition. In order to remove heat from the PV module, water was used as a single-phase working fluid. Water flowed through series of microchannels with a hydraulic diameter of 0.667 mm. In the studied range of Re number, detailed parametric investigation and energy evaluation were carried out for various fluid flow rates. The output power of the PV/T panel was compared with that of the conventional photovoltaic panel having no arrangement for heat removal. An excellent cooling performance was found from experiments so that the cell maximum power was marginally improved above 30%. 相似文献
20.
A possible way to enhance the rate of heat transfer in the spiral plate heat exchanger (SPHE) is by employing hybrid nanofluids as its working medium. Hence, in the present work, effects of hybrid nanofluids on the thermal performance of SPHE has been investigated numerically. First, a countercurrent SPHE is designed and modeled. Later, simulation of SPHE has been carried out by employing conventional fluid , nanofluids , and hybrid nanofluids to investigate the heat transfer rates. Finally, the performance of SPHE using hybrid nanofluid is compared with that of using water and nanofluids. The heat transfer augmentation of approximately 16%‐27% with hybrid nanofluids of overall 4% nanoparticles volume concentration and 10%‐16% with 2% nanoparticles volume concentration is observed when compared with that of pure water. Therefore, it can be inferred that the application of hybrid nanofluids in SPHE seems to be one of the promising solutions for augmentation of its thermal performance. 相似文献