首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entropy generation during the mixed convection process have been studied in a square enclosure for various moving horizontal (cases 1a–1d) or vertical wall(s) (cases 2a–2c) where the bottom wall of the cavity is isothermally hot, side walls are cold, and the top wall is adiabatic. Simulations have been performed for Prandtl number Pr = 0.026 and 7.2, Reynolds number Re = 10  100, and Grashof number Gr = 103  105. Results show that, in the case of the horizontally moving wall(s) (cases 1a–1d), the overall heat transfer rate Nub¯ and total entropy generation (Stotal) are identical for cases 1a–1d and the cup-mixing temperature (θcup) is high for case 1b at Pr = 0.026, Re = 100, and Gr = 105. Similarly, in the case of the vertically moving wall(s) (cases 2a–2c), Nub¯ and Stotal are identical for cases 2a–2c with the maximum θcup occurring for the case 2a. At Pr = 7.2, Gr = 105, and Re = 10, case 1a and case 1c are preferable for horizontally moving wall(s) and either of case 2a–2c is preferable for vertically moving wall(s). At Pr = 7.2, Gr = 105, and Re = 100, case 1d may be preferable for the horizontally moving wall(s) and case 2a may be preferable for the vertically moving wall(s).  相似文献   

2.
A penalty finite element method based simulation is performed to analyze the influence of various walls thermal boundary conditions on mixed convection lid driven flows in a square cavity filled with porous medium. The relevant parameters in the present study are Darcy number (Da = 10?5 ? 10?3), Grashof number (Gr = 103 ? 105), Prandtl number (Pr = 0.7–7.2), and Reynolds number (Re = 1–102). Heatline approach of visualizing heat flow is implemented to gain a complete understanding of complex heat flow patterns. Patterns of heatlines and streamlines are qualitatively similar near the core for convection dominant flow for Da = 10?3. Symmetric distribution in heatlines, similar to streamlines is observed irrespective of Da at higher Gr in natural convection dominant regime corresponding to smaller values of Re. A single circulation cell in heatlines, similar to streamlines is observed at Da = 10?3 for forced convection dominance and heatlines are found to emanate from a large portion on the bottom wall illustrating enhanced heat flow for Re = 100. Multiple circulation cells in heatlines are observed at higher Da and Gr for Pr = 0.7 and 7.2. The heat transfer rates along the walls are illustrated by the local Nusselt number distribution based on gradients of heatfunctions. Wavy distribution in heat transfer rates is observed with Da ? 10?4 for non-uniformly heated walls primarily in natural convection dominant regime. In general, exponential variation of average Nusselt numbers with Grashof number is found except the cases where the side walls are linearly heated. Overall, heatlines are found to be a powerful tool to analyze heat transport within the cavity and also a suitable guideline on explaining the Nusselt number variations.  相似文献   

3.
Analysis has been carried out for the energy distribution and thermal mixing in steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for various industrial applications. Simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy distribution, respectively. Multiple flow circulations are observed at Pr = 0.015 and 0.7 for all φs at Ra = 105. On the other hand, two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 75° at higher Pr (Pr = 7.2 and 1000) and Ra (Ra = 105). Heatlines are found to be parallel circular arcs connecting the cold and hot walls for the conduction dominant heat transfer at Ra = 103. The enhanced convective heat transfer is explained with dense heatlines and convective loop of heatlines at Ra = 105. Heatlines clearly demonstrate that the left wall receives heat from the bottom wall as heatlines directly connect both the walls whereas the convective heat circulation cells play lead role to distribute the heat along the right wall, especially for smaller φs. On the other hand, the heat flow is evenly distributed to both side walls at higher φs via convection as well as direct conductive transport. Significant convective heat transfer from the bottom hot wall to the left cold wall occurs for φ = 30° cavity whereas the heat transfer to the right cold wall is maximum for φ = 75° irrespective of Pr. Average Nusselt number studies also show that φ = 30° cavity gives maximum heat transfer rate from the bottom to left wall irrespective of Pr in isothermal heating case. On the other hand, enhanced thermal mixing occurs at φ = 75° for both isothermal and non-isothermal heating strategies except at Pr = 0.015 in isothermal heating case.  相似文献   

4.
The aim of the present investigation is to analyze the effect of the motion of horizontal walls on the entropy generation and heat transfer rates in an entrapped triangular porous cavity during mixed convection. Two different thermal boundary conditions are considered as follows: (i) hot inclined walls and cold horizontal walls and (ii) cold inclined walls and hot horizontal walls. Overall, Re?=?100 may be recommended at Prm?=?0.026, 7.2, Gr?=?105, and Dam?=?10?4 to 10?2 within the upper and lower cavities for cases 1 and 2.  相似文献   

5.
The present numerical study deals with mixed convection flows within square enclosures filled with porous media. The influence of various thermal boundary conditions on bottom and side walls based on thermal aspect ratio (A) is investigated for a wide range of parameters (1 ? Re ? 100, 0.015 ? Pr ? 7.2, 10?5 ? Da ? 10?3 and 103 ? Gr ? 105). A penalty finite element method with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines and average Nusselt numbers. Lid driven effect is dominant at low Darcy number (Da = 10?5), whereas buoyancy driven effect is dominant at high Darcy numbers (Da = 10?4 and Da = 10?3) for Re = 1. Asymmetric pattern is observed in isotherms and heatlines for Re = 100. It is found that thermal gradient is high at the center of the bottom wall for A = 0.1 due to large dense heatlines at that zone and that is low for A = 0.9 irrespective of Re, Pr and Gr. Overall heat transfer rates are higher for A = 0.1 compared to other thermal aspect ratios (A = 0.5, A = 0.9) irrespective of Darcy number, Prandtl number and Reynolds number.  相似文献   

6.
This article analyzes the detailed heat transfer phenomena during natural convection within tilted square cavities with isothermally cooled walls (BC and DA) and hot wall AB is parallel to the insulated wall CD. A penalty finite element analysis with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines. The present numerical procedure is performed over a wide range of parameters (103 ? Ra ? 105,0.015 ? Pr ? 1000,0° ? φ ? 90°). Secondary circulations cells are observed near corner regions of cavity for all φ’s at Pr = 0.015 with Ra = 105. Two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 15° at Pr = 0.7 and Pr = 1000 with Ra = 105. Heatlines indicate that the cavity with inclination angle φ = 15° corresponds to large convective heat transfer from the wall AB to wall DA whereas the heat transfer to wall BC is maximum for φ = 75°. Heat transfer rates along the walls are obtained in terms of local and average Nusselt numbers and they are explained based on gradients of heatfunctions. Average Nusselt number distributions show that heat transfer rate along wall DA is larger for lower inclination angle (φ = 15°) whereas maximum heat transfer rate along wall BC occur for higher inclination angle (φ = 75°).  相似文献   

7.
Combined heat and mass transfer from a horizontal channel with an open cavity heated from below is numerically examined in this paper. Air is the fluid considered (Pr = 0.7). The main focus of the study is mass-transfer driven flows (|N| > 1). The governing parameters considered are the buoyancy ratio N, Lewis number Le, Reynolds number Re, and Grashof number Gr. Based on the scale analysis, correlations for the entire convection regime, from natural, mixed, to forced convection, were proposed.  相似文献   

8.
Natural convection in enclosures with uniform heat generation and isothermal side walls is studied here. For the rectangular enclosure, two-dimensional conservation equations are solved using SIMPLE algorithm. Parametric studies are conducted to examine the effects of orientation of the cavity, fluid properties (Pr number), and aspect ratio for Rayleigh numbers up to 106. For a horizontal square cavity, the flow becomes periodically oscillating at Ra = 5 × 104 and chaotic at Ra = 8 × 105. With a slight increase in the inclination angle, the oscillations die and for inclination angles greater than 150, the flow attain a steady state over a range of Ra. It is found that for tall cavities (aspect ratio > 1), the steady-state solution is obtained for all values of Ra considered here. However, for wide cavities (aspect ratio < 1), an oscillatory flow regime is observed. The maximum temperature within the cavity is calculated for the range of Ra, aspect ratio and Pr number. Correlations for the maximum cavity temperature is presented here. The values of critical Rayleigh number at which the convection sets in the rectangular cavity are also studied and two distinct criteria are determined to evaluate the critical Rayleigh number. Further, a three-dimensional simulation is performed for a cubic cavity. It is found that the steady state solutions are obtained for all Rayleigh number, except at Ra = 106. This is in contrast to the predictions for a two-dimensional square cavity, which has an oscillatory zone from Ra = 5 × 104 onwards.  相似文献   

9.
Natural convection in trapezoidal cavities, especially those with two internal baffles in conjunction with an insulated floor, inclined top surface, and isothermal left-heated and isothermal right-cooled vertical walls, has been investigated numerically using the Element based Finite Volume Method (EbFVM). In numerical simulations, the effect of three inclination angles of the upper surface as well as the effect of the Rayleigh number (Ra), the Prandtl number (Pr), and the baffle’s height (Hb) on the stream functions, temperature profiles, and local and average Nusselt numbers has been investigated. A parametric study was performed for a wide range of Ra numbers (103 ? Ra ? 106) Hb heights (Hb = H1/3, 2H1/3, and H1), Pr numbers (Pr = 0.7, 10 and 130), and top angle (θ) ranges from 10 to 20. A correlation for the average Nusselt number in terms of Pr and Ra numbers, and the inclination of the upper surface of the cavity is proposed for each baffle height investigated.  相似文献   

10.
Numerical analyses were performed for the effect of inclined angle on the mixing flow in a square channel with uniform temperature walls (Tw = 30 °C) and inlet temperature (T0 = 10 °C). Three-dimensional governing equations were solved numerically for Re = 100, Pr = 0.72 and various inclined angles (from ?90° to 90°). Three-dimensional behavior of fluid in a channel was examined for each angle. Thermal performance was evaluated using the relationship between Nusselt number ratio and pressure loss ratio with and without buoyancy induced flow as a parameter of inclined angles. High heat transfer and low pressure loss region was from ?15° to ?60° in thermal performance using mean Nusselt number ratio.  相似文献   

11.
Natural convection in isosceles triangular enclosures with various configurations (case 1 — inverted, case 2 — straight and case 3 — tilted) is studied via heatline analysis for linear heating of inclined walls. Detailed analysis and comparison for various base angles (φ = 45°, 60°) of triangular enclosures have been carried out for a range of fluids (Pr = 0.015  1000) within Ra = 103  105 using Galerkin finite element method. The heat flow distributions indicate conduction dominant heat transfer at low Ra (Ra = 103) for case 1 and case 2 whereas in case 3, convective heat flow is observed due to high buoyancy force. As Ra increases, enhanced thermal mixing is observed at the core of the cavity. Wall to wall heat transfer occurs at walls AB and AC due to linear heating boundary condition in all the cases. Although the distributions of fluid flow and heat flow are qualitatively similar for φ = 45° and 60°, the intensity of fluid flow and heat flow decreases as φ increases. Strength of fluid flow and heat flow circulation cells is found to be higher in case 3 for identical parameters. Results show that upper side wall (AC) for case 3 exhibits higher heat transfer rates whereas heat transfer rates for walls AB and AC are the same for case 1 and case 2. Also NuAB is higher for case 2 followed by case 1 and case 3 at the middle portion of wall AB. Thus to achieve high heat transfer from fluid to wall at the central region, case 2 and case 3 configurations may be recommended at high Ra (Ra = 105) and Pr, irrespective of φ.  相似文献   

12.
Direct numerical simulations of the turbulent dispersion of a buoyant line of hot fluid released at the inlet of a plane channel flow are reported (Reτ = 180, Gr = 107 and Pr = 0.7). Results of turbulent dispersion of a neutrally buoyant scalar and mixed convection flow are also included. The buoyancy force induces a vertical movement that, although small in mean, exhibits a significant fluctuation in the vertical velocity component and deflects the plume with the consequent loss of symmetry found in the neutrally buoyant results. The modification of the budgets for the time averaged momentum and heat transport equations reflects the rearranging of the different contributions induced by the buoyancy force.  相似文献   

13.
The characteristics of transient double-diffusive convection in a vertical cylinder are numerically simulated using a finite element method. Initially the fluid in the cavity is at uniform temperature and solute concentration, then constant temperature and solute concentration, which are lower than their initial values, are imposed along the sidewall and bottom wall, respectively. The time evolution of the double-diffusive convection is investigated for specific parameters, which are the Prandtl number, Pr = 7, the Lewis number, Le = 5, the thermal Grashof number, GrT = 107, and the aspect ratio, A = 2, of the enclosure. The objective of the work is to identify the effect of the buoyancy ratio (the ratio of solutal Grashof to thermal Grashof numbers: N = GrS/GrT) on the evolution of the flow field, temperature and solute field in the cavity. It is found that initially the fluid near the bottom wall is squeezed by the cold flow from the sidewall, a crest of the solute field forms and then pushed to the symmetry line. In the case of N > 0, a domain with higher temperature and weak flow (dead region) forms on the bottom wall near the symmetry line, and the area of dead region increases when N varies from 0.5 to 1.5. More crests of the solute field are formed and the flow near the bottom wall fluctuates continuously for N < 0. The frequency of the fluctuation increases when N varies from −0.5 to −1.5. Corresponding to the variety of the thermal and solutal boundary layers, the average rates of heat transfer (Nu) at the sidewall remain almost unchanged while the average rates of mass transfer (Sh) at the bottom wall change much in the cases of N = 1, 0, −1.  相似文献   

14.
Effects of moving lid-direction on MHD mixed convection in a cavity with the bottom wall being linearly heated are analyzed using a numerical technique. Vertical walls of the enclosure are adiabatic and the sliding wall at the top has constant temperature. The lid moves in the negative and positive x-direction. Finite volume method has been used to solve the governing equations. Results are presented for different values of Hartmann number (0 ? Ha ? 30), Reynolds number (100 ? Re ? 1000) and Grashof number (104 ? Gr ? 106). It is found that direction of lid is more effective on heat transfer and fluid flow in the case of mixed convection than it is the case in forced convection. Heat transfer is also decreased with increasing of magnetic field for all studied parameters.  相似文献   

15.
A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  105 and Prandtl number Pr, 0.7  Pr  10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

16.
Heat transfer results for mixed convection from a bottom heated open cavity subjected to an external flow are reported in this study for a wide range of the governing parameters (i.e., 1  Re  2000, 0  Gr  106) over cavities with various aspect ratios (A = 0.5, 1, 2 and 4). It has been found that the Reynolds number and Garshof number control the flow pattern and the occurrence of recirculating cells while the aspect ratio has a significant influence on the orientation of these cells. Heat transfer from the cavity base approaches that of natural convection at a low Reynolds number (i.e., the asymptotic natural convection regime) and approaches that of forced convection at a high Reynolds number (i.e., the asymptotic forced convection regime). In the mixed convection regime, the heat transfer rate is reduced and the flow may become unstable. A unique heat transfer correlation which covers all three convection regimes is also presented.  相似文献   

17.
By starting from a steady flow configuration based on the work of Deng et al. [Qi-Hong Deng, Jiemin Zhou, Chi Mei, Yong-Ming Shen, Fluid, heat and contaminant transport structures of laminar double-diffusive mixed convection in a two-dimensional ventilated enclosure, Int. J. Heat Mass Transfer 47 (2004) 5257–5269], a numerical investigation was conducted to analyse the unsteady double-diffusive mixed convection in two-dimensional ventilated room due to heat and contaminant sources. Owing to the large number of parameters, the results are reported only for a constant buoyancy ratio N equal to 1. The flow is found to be oscillatory for a fixed Reynolds number (700  Re  1000) when the Grashof number is varied in a wide range (103  Gr  106). Results of the simulations show that the onset of the oscillatory indoor airflow occurs for couples (Re, Gr) values that can be correlated as Re = aGrb.  相似文献   

18.
Analysis of entropy generation has been carried out for square cavities with distributed heated sources filled with various materials involving wide range of Pr(=0.015, 0.7, 10, 1000) during the conduction and convection regime within Ra(=103 ? 105). Entropy generation terms involving thermal and velocity gradients are evaluated accurately based on elemental basis set via Galerkin finite element method. Local entropy maps are analyzed in detail for various cases and the dominance of thermal and frictional irreversibilities is studied via average Bejan number. The heat transfer irreversibility is found to dominate during conduction regime while the fluid friction irreversibility dominates the entropy generation in the convection regime, except for the low Pr fluid based on the heating configuration of the cavity. Further, the variation of total entropy generation has been observed to be similar for different heating configurations for higher Pr fluids (=10, 1000) whereas, the configuration of cavity has been found to have little effect on total entropy generation for fluids with Pr = 0.7 during both conduction and convection regimes. Thermal mixing and degree of temperature uniformity due to distributed heating in various cases are also reported and optimum cases for processing of various fluids are presented based on minimum entropy generation.  相似文献   

19.
A numerical investigation of the steady magnetohydrodynamics free convection in a rectangular cavity filled with a fluid-saturated porous medium and with internal heat generation has been performed. A uniform magnetic field, inclined at an angle γ with respect to the horizontal plane, is externally imposed. The values of the governing parameters are the inclined angle γ = 0, π/6, π/4 and π/2, Hartmann number Ha = 0, 1, 5, 10 and 50, Rayleigh number Ra = 10, 100, 103 and 105, and the aspect ratio a = 0.01, 0.2, 0.5 and 1 (square cavity). It is shown that the intensity of the core convection is considerably affected by the considered parameters. It is also found that the local Nusselt number NuY decreases on the bottom wall as γ increases (magnetic field changes its direction from the horizontal to the vertical direction) and vice versa for the top wall of the cavity. The reported results are in good agreement with the available published work in the literature.  相似文献   

20.
Natural convection in an air filled enclosure with a localized nonuniform heat source mounted centrally on the bottom wall is numerically investigated. The vertical walls are cooled while the top wall and the remaining portions of the bottom wall are insulated. The heat source is assumed to be isothermal with a linearly varying temperature. The governing equations were solved using finite volume method on a uniformly staggered grid system. The computational results are presented in the form of isotherm and streamline plots and Nusselt numbers. The effects of the source nonuniformity parameter, λ and the line source length, ε are investigated for the Grashof numbers Gr = 106 and 107. It is found that for Gr = 106 nonuniform heating of the line source enhances the overall heat transfer rate markedly compared to uniform heating of the heat source whereas for Gr = 107 its effect is marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号