首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three models of latent heat storage with circular fins were studied numerically and experimentally in this paper. The models were shell-and-tube, shell-and-nozzle, and shell-and-reducer. These models were investigated for two different inlets of heat transfer fluid (HTF), from the bottom and top of the models, so the number of studied cases was six. The results of the comparison between the cases showed that the different HTF inlet with a fixed mass flow rate greatly affects the completion time of the melting process; the bottom inlet of HTF accelerates the melting compared to the top inlet because it enhances the role of natural convection. Compared with shell-and-tube with bottom HTF inlet, the shell-and-nozzle with bottom inlet reduces the melting time by 11.2%, while the shell-and-reducer with bottom inlet delays the melting by 24%. The results of the top HTF inlet cases showed that shell-and-nozzle delays the melting by 16% compared with shell-and-tube, while the melting is not completed in shell-and-reducer. Shell-and-nozzle with a bottom HTF inlet shows the shortest melting time and the best thermal performance among all the other cases due to the geometric design of the model. On comparing the numerical and experimental results, good agreement was found between them.  相似文献   

2.
由于相变换热储能技术可以协调能量在时间和空间尺度的分配,成为了目前研究的热点问题。本工作用焓值法分别对充填低温无机盐相变材料的二维和三维管壳式相变储能换热器模型的储/放热特性进行了模拟研究,采用Boussinesq近似研究了液相区密度变化引起的自然对流的影响。研究表明换热器的入口温度对相变换热效率影响显著;在储热过程中自然对流发挥了重要作用,换热效率与液相区的运动状态直接相关,而放热过程中的热交换主要依靠热传导完成;三维模拟的结果表明换热管出口温度与管壁的平均努赛尔数高度相关,且换热管水平放置的换热效率略低于竖直放置。  相似文献   

3.
This paper describes the development and performance of a direct-contact heat exchanger using erythritol (melting point: 391 K) as a phase change material (PCM) and a heat transfer oil (HTO) for accelerating heat storage. A vertical cylinder with 200-mm inner diameter and 1000-mm height was used as the heat storage unit (HSU). A nozzle facing vertically downward was placed at the bottom of the HSU. We examined the effects of flowrate and inlet temperature of the HTO using three characteristic parameters of heat storage – difference between inlet and outlet HTO temperatures, temperature effectiveness, and heat storage rate. The temperature history of latent heat storage (LHS) showed three stages: sensible heat of solid PCM, latent heat of PCM, and sensible heat of liquid PCM. Further, the operating mechanism of the DCHEX was proposed to explain the results. The average heat storage rate during LHS was proportional to the increase in flowrate and inlet temperature of HTO. Thus, latent heat can be rapidly stored under large HTO flowrate and high inlet temperature in the DCHEX.  相似文献   

4.
The thermal and heat transfer characteristics of lauric acid during the melting and solidification processes were determined experimentally in a vertical double pipe energy storage system. In this study, three important subjects were addressed. The first one is temperature distributions and temporal temperature variations in the radial and axial distances in the phase change material (PCM) during phase change processes. The second one is the thermal characteristics of the lauric acid, which include total melting and total solidification times, the nature of heat transfer in melted and solidified PCM and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition parameters. The final one is to calculate the heat transfer coefficient and the heat flow rate and also discuss the role of Reynolds and Stefan numbers on the heat transfer parameters. The experimental results proved that the PCM melts and solidifies congruently, and the melting and solidification front moved from the outer wall of the HTF pipe (HTFP) to the inner wall of the PCM container in radial distances as the melting front moved from the top to the bottom of the PCM container in axial distances. However, it was difficult to establish the solidification proceeding at the axial distances in the PCM. Though natural convection in the liquid phase played a dominant role during the melting process due to buoyancy effects, the solidification process was controlled by conduction heat transfer, and it was slowed by the conduction thermal resistance through the solidified layer. The results also indicated that the average heat transfer coefficient and the heat flow rate were affected by varying the Reynolds and Stefan numbers more during the melting process than during the solidification process due to the natural convection effect during the melting process.  相似文献   

5.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120  相似文献   

6.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

7.
The use of a heat exchanger using phase change material (PCM) is an example of latent heat thermal energy storage (LHTES). In this study, the charging of PCM (RT50) is studied in a double pipe heat exchanger. The designing of the heat exchanger needs to be optimized for operating and boundary conditions to store latent heat efficiently. The size of the equipment and the amount of PCM are also important to calculate the latent heat storage capacity of the LHTES device. In this study, the amount of PCM taken is quite high to avoid sensible heat transfer and to maximize the heat content of PCM. The charging process of PCM is numerically simulated using an enthalpy-porosity model. The study includes the effect of inlet temperature and flow rate of high-temperature-fluid (HTF) and concludes that both play an important role in determining the charging time. The continuous increase in inlet temperature of HTF can decrease the charging time of PCM in the heat exchanger. However, the continuous increase in the HTF flow rate cannot show the same effect. The charging time can only be minimized with a specified flow rate regime for a specific inlet temperature of HTF. These factors consequently affect the efficiency of the heat exchanger.  相似文献   

8.
The cylindrical latent heat storage tanks considered here are part of a domestic heating system. In this study, the performances of such energy storage tanks are optimized theoretically. Two different models describing the diurnal transient behaviour of the phase change unit were used. The first is suited to tanks where the phase change material (PCM) is packed in cylinders and the heat transfer fluid (HTF) flows parallel to it (mode 1). The second is suited to tanks where pipes containing the fluid are embedded in the PCM (mode 2). The problem (treated as two-dimensional) is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. A series of numerical tests are then undertaken to assess the effects of various PCMs, cylinder radii, pipe radii, total PCM volume in the tank, mass flow rates of fluid, and inlet temperatures of the HTF on the storing time. In addition, optimal geometric design of the store depending on these parameters and PCMs is presented.  相似文献   

9.
Anica Trp   《Solar Energy》2005,79(6):648-660
The latent thermal energy storage system of the shell-and-tube type during charging and discharging has been analysed in this paper. An experimental and numerical investigation of transient forced convective heat transfer between the heat transfer fluid (HTF) with moderate Prandtl numbers and the tube wall, heat conduction through the wall and solid–liquid phase change of the phase change material (PCM), based on the enthalpy formulation, has been presented. A fully implicit two-dimensional control volume Fortran computer code, with algorithm for non-isothermal phase transition, has been developed for the solution of the corresponding mathematical model. The comparison between numerical predictions and experimental data shows good agreement for both paraffin non-isothermal melting and isothermal solidification. In order to provide guidelines for system performance and design optimisation, unsteady temperature distributions of the HTF, tube wall and the PCM have been obtained by a series of numerical calculations for various HTF working conditions and various geometric parameters, and the thermal behaviour of the latent thermal energy storage unit during charging and discharging has been simulated.  相似文献   

10.
Thermal performance characteristics of a eutectic mixture of lauric and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipe-energy storage system. This study deals with three important subjects: The first one is to determine the eutectic composition ratio of the lauric acid (LA) and stearic acid (SA) binary system, and to measure its thermophysical properties by DSC. The second one is to establish the thermal characteristics of the mixture such as total melting and solidification times, the heat transfer modes in melted and solidified PCM, and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition behaviors. The final one includes the calculations of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, and heat fractions during the melting and solidification processes of the mixture, and also the discussion of the effect of inlet HTF parameters on these characteristics. The LA–SA binary system in the mixture ratio of 75.5:24.5 wt % forms a eutectic, which melts at 37°C and has a latent heat of 182.7 J g−1, and, thus, these properties make it an attractive phase change material used for passive solar space heating applications such as building and greenhouse heating with respect to the climate conditions. The experimental results indicated that the mixture encapsulated in the annulus of two concentric pipes has good thermal and heat transfer characteristics during the melting and solidification processes, and it has potential for heat storage in passive solar space heating systems.  相似文献   

11.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

12.
In this paper, a mathematical model of shell-and-tube latent heat thermal energy storage (LHTES) unit of two-dimension of three phase change materials (PCMs) named PCM1, PCM2 and PCM3 with different high melting temperatures (983 K, 823 K and 670 K, respectively) and heat transfer fluid (HTF: air) with flowing resistance and viscous dissipation based on the enthalpy method has been developed. Instantaneous solid–liquid interface positions and liquid fractions of PCMs as well as the effects of inlet temperatures of the air and lengths of the shell-and-tube LHTES unit on melting times of PCMs were numerically analyzed. The results show that melting rates of PCM3 are the fastest and that of PCM1 are the slowest both x, r directions. It is also found that the melting times of PCM1, PCM2 and PCM3 decrease with increase in inlet temperatures of the air. Moreover, with increase in inlet temperatures of the air, decreasing degree of their melting times are different, decreasing degree of the melting time of PCM1 is the biggest and that of PCM3 is the smallest. Considering actual application of solar thermal power, we suggest that the optimum lengths are L1 = 250 mm, L2 = 400 mm, L3 = 550 mm (L = 1200 mm) which corresponds to the same melting times of PCM1, PCM2 and PCM3 are about 3230 s and inlet temperature of the air is about 1200 K. The present analysis provides theoretical guidance for designing optimization of the shell-and-tube LHTES unit with three PCMs for solar thermal power.  相似文献   

13.
In this study, an analytical model for a class of heat storage that utilizes latent heat of a phase-change material (PCM) is developed. Two basic shell-and-tube configurations are considered, one in which the PCM melts inside the tubes while the heat transfer fluid (HTF) flows in the shell along it, and the other in which HTF flows inside the tubes while PCM melts outside. A system of partial differential equations, which describes heat transfer and melting of the PCM and heat transfer in the HTF, is derived with some simplifying assumptions, while still capturing and preserving the essential features of the processes involved. These equations are solved analytically, yielding the overall heat exchange parameters, like instantaneous heat transfer rate, stored energy, and overall operation time of the system. The present work shows that the use of the proposed analytical technique and its modifications for the practical PCM arrangements is beneficial. Proper application of the model makes it possible to obtain the parameters of a real PCM melting process in the form of algebraic formulas, both for the transient values of variables over time, and for the overall process characteristics. A comparison with the results of numerical calculations of transient melting, made using computational fluid dynamics, confirms the validity of analytical findings and allows to assess the degree of accuracy of the results of our analytical method in various practical cases.  相似文献   

14.
Employment of latent heat storage unit (LHSU) utilizing phase change material (PCM) in a substantial scale is constrained by the poor thermal conductivity of PCMs. Future utilization of LHSU will therefore to a great extent rely on the heat transfer intensification techniques. Present research is on enhancement techniques in which heat transfer mechanism is altered without altering the mass of PCM and heat transfer surface area. The intensification mechanisms considered in the present research include imparting eccentricity to heat transfer fluid (HTF) pipe, imparting rotation to the LHSU and providing multi HTF tube. Numerical investigations are reported here towards comparative evaluation of the thermal characteristics associated with such intensification mechanisms for horizontal LHSU. In the present study stearic acid (melting point 55.7–56.6?°C) is used as PCM and water is used as HTF. Results infer that all the three mechanisms offer quicker melting rate. For the geometric configuration of LHSU considered in the present research, a reduction in melting time of 47.75% is evaluated for rotating LHSU. The rate of energy storage is higher for both eccentric and rotating LHSU. Solidification process is however not accelerated by such techniques. On the contrary, eccentric and multi HTF tube LHSU takes more time for solidification.  相似文献   

15.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

16.
A theoretical model was developed to predict the transient behavior of a shell-and-tube storage unit with the phase change material (PCM) on the shell side and the heat transfer fluid (HTF) circulating inside the tubes. The multidimensional phase change problem is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. The numerical predictions are validated with experimental data. A series of numerical experiments are then undertaken to assess the effects of various thermal and geometric parameters on the heat transfer process and on the behavior of the system. Results show that the shell radius, the mass flow rate, and the inlet temperature of the HTF must be chosen carefully in order to optimize the performance of the unit.  相似文献   

17.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The present paper describes the analysis of the melting process in a single vertical shell‐and‐tube latent heat thermal energy storage (LHTES), unit and it is directed at understanding the thermal performance of the system. The study is realized using a computational fluid‐dynamic (CFD) model that takes into account of the phase‐change phenomenon by means of the enthalpy method. Fluid flow is fully resolved in the liquid phase‐change material (PCM) in order to elucidate the role of natural convection. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Temperature profiles are analyzed and compared with experimental data available in the literature. Other relevant quantities are also monitored, including energy stored and heat flux exchanged between PCM and HTF. The results demonstrate that natural convection within PCM and inlet HTF temperature significantly affects the phase‐change process. Thermal enhancement through the dispersion of highly conductive nanoparticles in the base PCM is considered in the second part of the paper. Thermal behavior of the LHTES unit charged with nano‐enhanced PCM is numerically analyzed and compared with the original system configuration. Due to increase of thermal conductivity, augmented thermal performance is observed: melting time is reduced of 15% when nano‐enhanced PCM with particle volume fraction of 4% is adopted. Similar improvements of the heat transfer rate are also detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
本文基于最小火积耗散热阻原理,在考虑相变材料导热热阻以及非稳态传热过程的基础上,对多级套管式相变蓄热系统的融化温度进行了数值优化,获得了最优融化温度分布。在此基础上,研究了相变材料导热系数和传热管长度对最优融化温度、火积耗散热阻和平均蓄热速率的影响。研究结果表明,与现有理论优化方法相比,本文提出的数值优化方法具有更好的适用性;优化后多级套管式相变蓄热系统可有效提高相变蓄热系统的平均蓄热速率,降低火积耗散热阻;随着相变材料导热系数增大和传热管长度增加,多级套管式相变蓄热系统最优融化温度的温差愈加明显,其强化传热性能呈上升趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号