首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过开展相似试验,研究了较优相向射流风速和不同火源功率条件下,竖井高度与横截面积对竖井内烟气运动模式的影响。结果表明:竖井高度与横截面积增大均会促使吸穿效应的发生;竖井横截面积越大,对应的临界竖井高度越小;求得试验条件下的Ri临界值为0.56,当Ri小于0.56时,竖井内主要发生边界层分离,当Ri大于0.56时,主要发生吸穿效应。  相似文献   

2.
通过数值计算,研究顶部开口自然通风隧道火灾火源–竖井间距对烟气流动特征与竖井排烟效率的影响。考虑因素有火源–竖井间距、竖井断面尺寸。结果表明:随着火源–竖井间距的增大,竖井前方来流烟气的质量流量增大,且竖井的排烟效率逐渐降低,竖井内空气卷吸量减少;当火源–竖井间距较小时,竖井更有利于排出更多的热量,竖井后方的温度降低幅度更大,烟气可以被控制在更小的范围内。此外,随着竖井截面尺寸的增大,竖井的排烟效率增加,且增大竖井的宽度更有利于增加竖井的排烟量。因此建议当相邻竖井的间距较大时,可适当增加竖井的截面尺寸和竖井高度。  相似文献   

3.
通过数值计算方法,研究了顶部开口自然通风隧道竖井的排烟效率。考虑了火源热释放速率、竖井高度、长度和宽度及竖井位置的影响,并与竖井排烟效率计算模型进行对比。研究结果发现:竖井的排烟效率随竖井高度的增加而略微增大;竖井的排烟效率基本不随火源热释放速率的变化而变化;随着竖井长度和宽度地增加,排烟效率大幅增加;此外,当竖井位于顶棚中央时,排烟效率较位于顶棚一侧的排烟效率高,且烟气控制效果好。此外,竖井排烟效率模型可以较好地预测不同竖井尺寸和位置的排烟效率。  相似文献   

4.
为了比较顶棚机械排烟和侧向机械排烟在隧道火灾中的排烟效果,采用数值模拟的方法对隧道火灾中两种排烟方式的温度分布、流场分布、排烟量、排热量以及排烟效率进行对比。结果表明,两种排烟方式的流场分布与烟气吸入方式差别较大;侧向机械排烟更容易发生吸穿;顶棚机械排烟的排烟量和排热量更高,排烟效果更好;侧向机械排烟由于更容易发生吸穿,导致大量的空气进入排烟口,其排烟效率始终小于顶棚机械排烟。  相似文献   

5.
通过隧道火灾模型试验,研究纵向通风对竖井排烟效果及隧道内纵向烟气温度分布的影响。试验考虑不同火源热释放速率和纵向风速。结果表明:纵向风速对正庚烷池火热释放速率存在影响,对于较小正庚烷池火(≤11 cm),火源热释放速率基本不随纵向风速而改变;对于较大正庚烷池火(≥14 cm),火源热释放率随风速的增加先降低后基本保持恒定。此外,当隧道内风速较小时,竖井内烟气附壁排出,竖井后方烟气温度较低,控烟效果较好;当隧道内风速较大时,竖井内烟气出现边界分离,竖井后方温度升高,烟气蔓延距离增加,竖井排烟效果较差。因此,建议当竖井型隧道内发生火灾时,应尽量采用自然通风或较低的内部通风,避免较高风速。  相似文献   

6.
Three full-scale burning tests were conducted in a natural ventilation city road tunnel with shafts. Fire sources were placed to be at different locations but its peak release heats were all around 5 MW. Results showed that large amounts of smoke and heat were released through shafts. The maximum smoke temperatures under the ceiling were below than 100 °C, and being lower than 110 °C at the safe height farther 3 m away from fires. The maximum smoke spreading horizontal lengths were less than 240 m both in the upwind and downwind. During the late stages, many smoke particles descended from the ceiling and downdraught occurred at shafts due to low smoke temperatures, but the visibility was not very bad and people needn’t evacuate. All These results are valuable for fire protection and construction of natural ventilation road tunnel with shafts.  相似文献   

7.
建立单孔隧道模型,采用FDS 数值模拟分析不同高度的组合挡板对隧道机械排烟的影响。结果表明,相较于普通排烟口,安装组合挡板可以有效提高隧道机械排烟效率,改善排烟口处气体压力场的分布状态,减小垂直方向的排烟风速,加大水平方向的排烟风速,从而降低吸穿现象发生概率。经模拟验证,发现组合挡板高度是影响吸穿现象发生的重要因素,组合挡板会使排烟口前方烟层厚度变小,当烟层厚度小于挡板高度时就会发生吸穿现象。通过比较挡板高度分别为50、65、80、95、110 cm 几种情况的模拟效果,发现H=50 cm 工况排烟口处的烟气浓度最高,单位时间排烟量最大,排烟效果最好。  相似文献   

8.
To assess the impact of heat smoke in tunnel with vertical shafts, the maximum temperature of smoke beneath ceiling is researched theoretically and experimentally in this paper. A theoretical prediction model for maximum temperature of smoke beneath ceiling is built using dimensional analysis. A numerical model is built and calibrated with the full-scale experiment data. The calibrated numerical model is used to simulate the maximum temperature of smoke under different conditions with different shaft geometry. At last, the proposed theoretical model was formulated and compared with Kurioka model, experimental data and simulation data. The results show that the proposed theoretical model can give a better prediction for the tendency. It can be used to predict the maximum temperature of smoke beneath ceiling of tunnel with vertical shafts by taking the shaft geometry and arrangements effect into account.  相似文献   

9.
According to the case-based reasoning of natural ventilation designs in recommended Green Buildings, an investigated model space was proposed in this study. FDS simulations and full-scale experiments were carried out to measure the impact of natural ventilation conditions and the installation of a natural ventilation shaft on smoke layer descent during different fire scenarios. The feasibility of using the N-percentage rule to determine the fire smoke layer height in a naturally ventilated space was also investigated.In a non-fire room, the smoke descent curve determined from the FDS simulated temperatures is consistent with the experimentally measured temperatures and visual observation of the smoke layer. However, the thermocouples in the fire room are affected by direct burning and fire radiation, and the experimentally measured temperatures cannot be used to determine the smoke height. Under these conditions, FDS simulations can be used to compensate for the lack of experimental measurements. In fire scenarios without outdoor winds blowing into the building's interior, FDS simulations can reliably model the fire smoke layer height. When outdoor air blows into the interior, it causes the smoke layer temperature to become unstable. Thus, the temperature will not be thermally stratified, and the use of the N-percentage rule is not recommended.  相似文献   

10.
以某综合管廊为研究背景,利用PyroSim 模拟软件建立的仿真计算模型,研究了设立挡烟垂壁、改变防火门开启程度、增设排烟设施等情况下的烟气蔓延规律。研究发现:在烟气未充满管廊时,挡烟垂壁会使烟气蔓延速度降低,烟气蔓延速度与挡烟垂壁高度成反比;防火门打开会使火灾烟气蔓延至相邻防火分区,烟气蔓延速率与防火门开启程度成正相关;机械排烟设施会使烟气蔓延速度显著降低,最高降低约50%,当烟气完全充满整个管廊时,会显著降低综合管廊内烟气浓度,烟气层温度最高降幅32 ℃,能见度最高增加了66%。通过对综合管廊内烟气蔓延的研究,探寻防治综合管廊烟气蔓延的最佳措施,为综合管廊烟气防治的实际工程应用提供参考。  相似文献   

11.
Study of smoke movement or air flow due to fire in sloping tunnels is important in designing smoke control systems. In contrast to a horizontal tunnel, there is an acceleration along the longitudinal axis due to smoke buoyancy. This phenomenon together with thermal radiation would lead to a complicated heat transfer mechanism of the ceiling jet in sloping tunnels. In the present work, thermally induced air flow arising from fire in sloping tunnels was studied via numerical simulations using the Computational Fluid Dynamics code FLUENT. Prior to the application of FLUENT in simulating the air flow under different conditions, scale model experiments were carried out and the results were compared with simulation results, to establish the reliability of FLUENT in simulating fires in sloping tunnels. For this purpose, a tunnel section model of length 3 m, width 0.8 m and height 1 m was constructed, with a 1.5 kW electrical heating source to model fire. Hot air movement pattern driven by the electric heater was studied with the tunnel inclined at 0°, 10°, 20° and 30° to the horizontal. Four cases of the same configuration as the scale tunnel experiments were simulated using FLUENT, with predicted results agreeing well with experimental results. Having established the suitability of FLUENT in simulating air flow due to fire in sloping tunnels, numerical simulations were carried out to study air flow in sloping tunnels with different scenarios, that is, for tunnels with different gradients and with fire located at different positions in the tunnel. Macroscopic number on heat transfer, including the Rayleigh number Ra, the average and local Nusselt number Nuave for sloping tunnels were also studied from the measured results. The correlation between Nuave and Ra, which shows the effect of hydrodynamic properties on relative dominance of heat transfer in tunnel fire, was also discussed.  相似文献   

12.
Ventilation is an effective method for controlling smoke during a fire. The “critical ventilation velocity” ucr is defined as the minimum velocity at which smoke is prevented from spreading under longitudinal ventilation flow in tunnel fire situations. All previous studies on this topic have simulated fire scenarios in which only one fire source exists. This study conducted small-scale experiments and numerical simulations to investigate ucr for cases in which two tunnel fires occur simultaneously. The tunnel was 4 m long, 0.6 m wide and 0.6 m tall. Three cases of two variously separated fires were experimentally explored and six cases were examined numerically. Both the experimental and simulation results indicated that for two identical fires, ucr declines with separation. When the two fire sources are separate completely, ucr can be determined by considering only a single fire. When the larger fire is upstream of the smaller downstream fire, ucr also decreases with the separation. When two such fires sources are completely separate, ucr can be evaluated by considering only the larger fire. The concurrent ventilation flow and flow of downstream smoke from the larger fire are strong enough to suppress the smoke flow from the smaller fire. However, when the smaller fire is upstream of the larger fire, the decrease in ucr becomes insignificant as distance increases and the flow at ucr must overcome the flow from both fires.  相似文献   

13.
借助理论分析及数值模拟相结合的手段对某盾构城市地下道路火灾工况下,火源与排烟竖井的相对位置对重点排烟效果的影响进行模拟研究。研究结果表明单向排烟模式在一定的排烟量条件下,火源位置距离排烟竖井越近,排烟效果越好。当火源位于两个排烟竖井之间且偏向其中某一个竖井位置时,在排烟量允许的前提下,可以仅开启离火源位置较近的竖井风机排烟;当火源位于两竖井正中间位置时,可采用双向排烟模式;当火源恰好位于某个竖井正下方时,可以仅开启该竖井风机排烟,但采取该工况应综合考虑隧道内烟道板的耐火极限及耐火时间。  相似文献   

14.
采用火灾模拟专业软件FDS对不同火源位置、不同风向条件下火灾烟气的运动进行模拟,测定典型位置处温度、速度、CO及CO2体积分数变化情况。实验结果表明:在近地风场中,风向对竖井内烟气蔓延的影响大小顺序为迎风>背风>侧风,竖井开口位于迎风面时,外界风对竖井内烟气运动影响最大:火源位于中性面以上时,烟气通过竖井与前室的开口向竖井内蔓延,并向下运动;而火源位于中性面以下时,前室内烟气向外部运动,竖井内无烟气流入。  相似文献   

15.
The Fire Dynamics Simulator code is used to investigate the smoke movement in an atrium under fire scenario. At first, by comparing with experimental data of the atrium fire under low and high heat release rates, reasonable model constants of Cs and Prt and appropriate grid system are determined for simulating smoke movement in the atrium, the simulation results are in good agreement with those experimental data. Then, the performance of different smoke exhaust methods in the atrium is studied. Smoke filling processes are investigated under different natural and enhanced smoke exhaust methods. Simulated results show that natural smoke exhaust method is preferred when the smoke exhaust vents are located at the ceiling of the atrium. On the other hand, when the smoke exhaust vents are located on the walls of the atrium, the higher positions of the smoke exhaust vents are preferred. In addition, the influence of the fire source locations on the smoke spreading process is presented in this paper, three kinds of fire source locations are studied, they are central fire, side wall fire and corner fire. Results indicate that the descending process of the smoke layer is the slowest when the fire source is at the corner of the atrium.  相似文献   

16.
Smoke layer interface height is an important parameter in fire safety science. In this paper, a series of experiments were conducted in a 1/6th scale model tunnel for determining the smoke layer interface height in medium scale tunnel fire scenarios. The commonly used approaches, including visual observation, N-percentage rule and integral method are reviewed firstly. Then, considering the subjectivity and empiricism of previous approaches, a buoyancy frequency method is put forward based on the vertical temperature distribution in tunnel, which has definite physical meaning and eliminates the subjectivity of previous methods. The smoke layer thicknesses determined by buoyancy frequency method are compared with the results of visual observation, N-percentage rule (N = 10, 20, 30) and integral ratio method, respectively. The comparison results reveal that the smoke layer thicknesses determined by buoyancy frequency method fit best with the visual values for all the experimental conditions. While the calculated values by integral ratio method are lower than the visual values. In addition, the selection of optimum N values for the N-percentage rule in different cases is also discussed.  相似文献   

17.
This paper presents an experimental investigation on the transverse ceiling flame length and the temperature distribution of a sidewall confined tunnel fire. The experiments were conducted in a 1/6th scale model tunnel with the fire source placed against the sidewall, 0 m, 0.17 m and 0.35 m above the floor, respectively. Experiments of fire against a wall without a ceiling, 0.35 m above the floor in a large space, were also conducted as a control group. Results shows that for small heat release rate (HRR), the flame is lower than the ceiling and extends along the sidewall. With the increase of HRR and elevation of burner height, the flame gradually impinges on the ceiling and spreads out radially along it. The flame impingement condition and the flame shapes of the wall fire with and without ceiling are presented. From the viewpoint of the physical meaning of flame impinging on the ceiling, the horizontal flame length should be a function of the unburned part of the fuel at the impinging point. Based on the proportional relation between the flame volume and HRR, the effective HRR (Qef) at the ceiling is determined and the effective dimensionless HRR, Q*ef is defined to correlate the horizontal ceiling flame length. Additionally, predictive correlations of transverse ceiling temperature distribution are proposed for the continuous flame region, the intermittent flame region and the buoyant plume region under the ceiling, respectively.  相似文献   

18.
Measurements are presented of the variation with height of the mass flux of two-dimensional, adhered smoke plumes created by horizontal smoke layers that flow below a ceiling and spill into a hall near one of its walls, and of the effect of the Froude number (Fr) of these horizontal layers on the shape of the rising plumes in the hall. The measurements suggest that such smoke layers would usually rise vertically; either adhered to the wall, when Fr is roughly <1, or as a free plume, when Fr is roughly >1, and that the entrainment of ambient air to these plumes is approximately proportional to their free perimeter. It is also shown that in both cases, the variation at large heights of the mass flux of these plumes varies approximately as that of a similar, weak plume from a virtual line source, whose location can be estimated by a previously suggested simple model. Possible effects of downstands in the ceiling and of boundary conditions in the hall are also discussed.  相似文献   

19.
Critical ventilation velocity for tunnel fires occurring near tunnel exits   总被引:1,自引:0,他引:1  
Ventilation is an effective method for controlling smoke during a tunnel fire. The “critical ventilation velocity” ucr is generally defined as the minimum velocity at which smoke is prevented from spreading against the longitudinal ventilation flow in tunnel fire situations. This study conducted small-scale experiments to investigate ucr for situations when tunnel fire occurs near tunnel exits. The model tunnel was 4 m long, 0.6 m wide and 0.6 m tall, and the fires were located at 0.5 m, 1.0 m and 1.5 m from the tunnel exit. 6.3×6.3 cm2 and 9.0×9.0 cm2 square asoline fuel pans were used as fire source. Results show that ucr decreases as the fire approaches the tunnel exit.  相似文献   

20.
火灾烟气的密度跃变过程会卷吸烟气下部的空气,使得烟气层明显增厚、质量流量显著增大,这会加大疏散与救援的难度,并影响既有防排烟设计的有效性。为明确烟气层密度跃变的机理及危害,采用数值模拟方法,研究了狭长通道火灾烟气沿顶棚水平蔓延过程中,顶部障碍物的存在对其下游烟气层密度跃变的影响。结果表明,若没有顶部障碍物的作用,仅增大热释放速率并不能使得烟气层发生密度跃变。而顶部障碍物可能引起其下游烟气流动状态突变,并引发密度跃变。跃变所产生的烟气层厚度、卷吸质量流量变化均与障碍物高度相关。并提出采用梯度弗劳德数作为判断烟气层密度跃变发生与否及衡量密度跃变效果的无量纲数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号