首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

2.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

3.
The subject of the present study is to relate the boiling heat transfer process with experimentally observed bubble behaviour during subcooled flow boiling of water in a vertical heated annulus. It presents an attempt to explain the transition from partial to fully developed flow boiling with regard to bubble growth rates and to the time that individual bubbles spend attached to the heater surface.Within the partial nucleate boiling region bubbles barely change in size and shape while sliding a long distance on the heater surface. Such behaviour indicates an important contribution of the microlayer evaporation mechanism in the overall heat transfer rate. With increasing heat flux, or reducing flow rate at constant heat flux, bubble growth rates increase significantly. Bubbles grow while sliding, detach from the heater, and subsequently collapse in the bulk fluid within a distance of 1-2 diameters parallel to the heater surface. This confirms that bubble agitation becomes a leading heat transfer mode with increasing heat flux. There is however, a sharp transition between the two observed bubble behaviours that can be taken as the transition from partial to fully developed boiling. Hence, this information is used to develop a new model for the transition from partial to fully developed subcooled flow boiling.  相似文献   

4.
An experiment is conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and the associated bubble characteristics of refrigerant R-407C in a horizontal narrow annular duct with the gap of the duct fixed at 1.0 and 2.0 mm. The measured boiling curves indicate that the temperature overshoot at ONB is relatively significant for the subcooled flow boiling of R-407C in the duct. Besides, the subcooled flow boiling heat transfer coefficient increases with a reduction in the duct gap, but decreases with an increase in the inlet liquid subcooling. Moreover, raising the heat flux imposed on the duct can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are slighter. Visualization of the subcooled flow boiling processes in the duct reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Raising the imposed heat flux, however, produces positive effects on the bubble population, coalescence and departure frequency. Meanwhile, the present heat transfer data for R-407C are compared with the R-134a data measured in the same duct and with some existing correlations. We also propose empirical correlations for the present data for the R-407C subcooled flow boiling heat transfer and some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density.  相似文献   

5.
An experiment is conducted here to investigate the saturated flow boiling heat transfer characteristics of ozone friendly refrigerant R-410A in a horizontal annular finned duct. Meanwhile the associated bubble characteristics in the duct are also inspected from the flow visualization. The experimental data are presented in terms of saturated flow boiling curves, boiling heat transfer coefficients and flow photos. In addition, empirical correlation equations for the saturated flow boiling heat transfer coefficient and mean bubble departure diameter are proposed. The saturated flow boiling curves show that boiling hysteresis is insignificant in the flow and the wall superheat needed for the onset of nucleate boiling is slightly affected by the refrigerant mass flux. Besides, the boiling curves are mainly affected by the imposed heat flux and refrigerant mass flux. Moreover, the measured saturated flow boiling heat transfer coefficient increases with the imposed heat flux and refrigerant mass flux. Furthermore, at a higher refrigerant mass flux the departing bubbles are smaller.  相似文献   

6.
In order to develop a mechanistic model for the subcooled flow boiling process, the key issues which must be addressed are wall heat flux partitioning and interfacial (condensation) heat transfer. The sink term in the two-fluid models for void fraction prediction is provided by the condensation rate at the vapor-liquid interface. Low pressure subcooled flow boiling experiments, using water, were performed using a vertical flat plate heater to investigate the bubble collapse process. A high-speed CCD camera was used to record the bubble collapse in the bulk subcooled liquid. Based on the analyses of these digitized images, bubble collapse rates and the associated heat transfer rate were determined. The experimental data were in turn used to correlate the bubble collapse rate and the interfacial heat transfer rate. These correlations are functions of bubble Reynolds number, liquid Prandtl number, Jacob number, and Fourier number. The correlations account for both the effect of forced convection heat transfer and thickening of the thermal boundary layer as the vapor bubble condenses which in turn makes the condensation heat transfer time dependent. Comparison of the measured experimental data with those predicted from the correlations show that predictions are well within ±25% of the experimentally measured values. These correlations have also been compared with those available in the literature.  相似文献   

7.
Recent literature indicates that under certain conditions the heat transfer coefficient during flow boiling in microchannels is quite similar to that under pool boiling conditions. This is rather unexpected, as microchannels are believed to provide significant heat transfer enhancement under single-phase as well as flow boiling conditions. This article explores the underlying heat transfer mechanisms and illustrates the similarities and differences between the two processes. Formation of elongated bubbles and their passage over the microchannel walls have similarities to the bubble ebullition cycle in pool boiling. During the passage of elongated bubbles, the longer duration between two successive liquid slugs leads to wall dryout and a critical heat flux that may be lower than that under pool boiling conditions. A clear understanding of these phenomena will help in overcoming these limiting factors and in developing strategies for enhancing heat transfer during flow boiling in microchannels.  相似文献   

8.
A simultaneous visualization and measurement study have been carried out to investigate flow boiling instabilities of water in microchannels at various heat fluxes and mass fluxes. Two separate flow boiling experiments were conducted in eight parallel silicon microchannels (with flow interaction from neighboring channels at headers) and in a single microchannel (without flow interaction), respectively. These microchannels, at a length of 30 mm, had an identical trapezoidal cross-section with a hydraulic diameter of 186 μm. At a given heat flux and inlet water temperature, it was found that stable and unstable flow boiling regimes existed, depending on the mass flux. A flow boiling map, in terms of heat flux vs mass flux, showing stable flow boiling regime and unstable flow boiling regime is presented for parallel microchannels as well as for a single microchannel, respectively, at an inlet water temperature of 35 °C. In the stable flow boiling regime, isolated bubbles were generated and were pushed away by the incoming subcooled liquid. Two unstable flow boiling regimes, with long-period oscillation (more than 1 s) and short-period oscillation (less than 0.1 s) in temperature and pressure, were identified. The former was due to the expansion of vapor bubble from downstream while the latter was owing to the flow pattern transition from annular to mist flow. A comparison of results of flow boiling in parallel microchannels and in a single microchannel shows that flow interaction effects from neighboring channels at the headers are significant.  相似文献   

9.
A simultaneous visualization and measurement investigation has been carried out on flow boiling of water in parallel silicon microchannels of trapezoidal cross-section. Two sets of parallel microchannels, having hydraulic diameters of 158.8 and 82.8 μm, respectively, were used. The visualization study shows that once boiling heat transfer is established, two-phase flow and single-phase liquid flow appear alternatively with time in the microchannels. Large-amplitude/long-period fluctuations with time in wall temperatures, fluid temperatures, fluid pressures, and fluid mass flux, are measured for the first time during flow boiling in the microchannels. The fluctuation periods are found to be dependent on channel size, heat flux, and mass flux. The mechanism of the periodic boiling fluctuations in this experiment as well as their comparisons with other boiling fluctuations phenomena reported previously, are also discussed. The experimental results confirm that large-amplitude/long-period boiling fluctuations can be sustained when the fluctuations of pressure drop and mass flux have phase differences.With the aid of a microscope and high-speed video recording system, bubbly flow, slug flow, churn flow, and other peculiar flow patterns, are observed during two-phase flow periods in the microchannels.  相似文献   

10.
A simultaneous visualization and measurement study has been carried out to investigate subcooled flow boiling and microbubble emission boiling (MEB) phenomena of deionized water in a partially heated Pyrex glass microchannel, having a hydraulic diameter of 155 μm, which was integrated with a Platinum microheater. Effects of mass flux, inlet water subcooling and surface condition of the microheater on subcooled flow boiling in microchannels are investigated. It is found that MEB occurred at high inlet subcoolings and at high heat fluxes, where vapor bubbles collapsed into microbubbles after contacting with the surrounding highly subcooled liquid. In the fully-developed MEB regime where the entire microheater was covered by MEB, the mass flux, the inlet water subcooling and the heater surface condition have only small effects on the boiling curves. The occurrence of MEB in microchannel can remove a large amount of heat flux, as high as 14.41 MW/m2 at a mass flux of 883.8 kg/m2 s, with only a moderate rise in wall temperature. Therefore, MEB is a very promising method for cooling of microelectronic chips. Heat transfer in the fully-developed MEB in the microchannel is presented, which is compared with existing subcooled flow boiling heat transfer correlations for macrochannels.  相似文献   

11.
Significant efforts have recently been made to investigate flow boiling in microchannels, which is considered an effective cooling method for high-power microelectronic devices. However, a fundamental understanding of the bubble motion and flow reversal observed during flow boiling in parallel microchannels is lacking in the literature. In this study, complete numerical simulations are performed to further clarify the boiling process by using the level-set method for tracking the liquid–vapor interface which is modified to treat an immersed solid surface. The effects of contact angle, wall superheat, and the number of channels on the bubble growth, reverse flow, and heat transfer are analyzed.  相似文献   

12.
A new mechanism model for determination of the critical heat flux (CHF) in subcooled impingement boiling on the stagnation zone is proposed in this paper. It is based on the combination of the Helmholtz instability theory of macrolayer and the model of bubble induced turbulent heat transfer in subcooled impingement boiling. A semi-theoretical and semi-empirical correlation and its nondimensional form of the CHF for subcooled jet impingement boiling on the stagnation zone are also derived. Under the circumstances of CHF, the bubble induced turbulent heat transfer coefficient gets doubled as compared to the single-phase laminar heat transfer coefficient according to the theoretical model and the experimental data. And this kind of bubble induced turbulent heat transfer enhancing effect can be considered as a fixed ratio. The theoretical analysis result for the present case is successfully verified by the experimental result obtained on the smooth heating surface. Through the discussions, it is obtained that the CHF ratio of the subcooled jet impingement boiling against the saturated jet impingement boiling is theoretically related to the surface condition of the heater and the properties and impact velocity of the working fluid.  相似文献   

13.
On numerical modelling of low-pressure subcooled boiling flows   总被引:2,自引:0,他引:2  
Although models of subcooled flow boiling at high pressure have been studied extensively, there are few equivalent studies for numerical modelling at low pressure. Recent experimental and numerical studies on subcooled boiling flow at low pressure have indicated that empirical models developed, and verified, for high-pressure situations are not valid at low pressures. A study has been conducted to extend a two-fluid model, previously used for predicting subcooled boiling flow at high pressures into being applicable for low-pressure conditions. This study demonstrates that the following closure relationships or parameters are important for an accurate prediction of void fraction distributions at low pressures: (i) partition of the wall heat flux; (ii) bubble size distribution and interfacial area concentration; and (iii) bubble departure diameter and its relationship with bubble frequency. Different existing correlations for all these are tested and some new correlations are proposed. Predictions of the proposed model agree closely with a number of published experimental data.  相似文献   

14.
Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the careful visualization and thermal measurements by previous investigators, similarities between heat transfer around a nucleating bubble in pool boiling and in the elongated bubble/slug flow pattern in flow boiling are brought out. The roles of microlayer evaporation and transient conduction/microconvection are discussed. Furthermore, it is pointed out that the convective contribution cannot be ruled out on the basis of experimental data which shows no dependence of heat transfer coefficient on mass flow rate, since the low liquid flow rate during flow boiling in microchannels at low qualities leads to laminar flow, where heat transfer coefficient is essentially independent of the mass flow rate. Specific suggestions for future research to enhance the boiling heat transfer in microchannels are also provided.  相似文献   

15.
The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.  相似文献   

16.
To explore the mechanism of flow boiling in microchannels, the processes of a single-vapor bubble evaporating and two lateral bubbles merging in a 2D microchannel are investigated. The temperature recovery model based on volume of fluid method is adopted to perform the flow boiling phenomena. The effects of wall superheat, Reynolds number, contact angle, surface tension, and two-bubble merger on heat transfer are discussed. Wall superheat dominates the bubble growth and is roughly proportional to wall heat flux. The update of velocity and temperature fields’ distribution in the channel increases with increasing inflow Reynolds number, which improves the wall heat flux markedly. Besides, the area of thin liquid film between the wall and the bubble is enlarged by reducing the contact angle, thus, expanding the wall heat flux several times compared with the single-phase cross section. However, variation of surface tension (0.0589, 0.1?N/m) is found to be insignificant.  相似文献   

17.
Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer of a dielectric fluid, Fluorinert FC-77, in microchannel heat sinks. Experiments are performed for mass fluxes ranging from 250 to 1600 kg/m2 s. Seven different test pieces made from silicon and consisting of parallel microchannels with nominal widths ranging from 100 to 5850 μm, all with a nominal depth of 400 μm, are considered. An array of temperature sensors on the substrate allows for resolution of local temperatures and heat transfer coefficients. The results of this study show that for microchannels of width 400 μm and greater, the heat transfer coefficients corresponding to a fixed wall heat flux as well as the boiling curves are independent of channel size. Also, heat transfer coefficients and boiling curves are independent of mass flux in the nucleate boiling region for a fixed channel size, but are affected by mass flux as convective boiling dominates. A strong dependence of pressure drop on both channel size and mass flux is observed. The experimental results are compared to predictions from a number of existing correlations for both pool boiling and flow boiling heat transfer.  相似文献   

18.
The interfacial heat transfer coefficient is an important parameter for the analysis of multi-phase flow. In subcooled boiling flow, bubbles condense through the interface of phases and the interfacial heat transfer determines the condensation rate which affects the two-phase parameters such as void fraction and local liquid temperature. Thus, the present experiments are conducted to correlate the interfacial heat transfer coefficient at low pressure in the subcooled boiling flow. The local liquid temperature is measured by microthermocouple and the bubble condensation rate is estimated by orthogonal, two-image processing. The condensate Nusselt number, which is a function of bubble Reynolds number, local liquid Prandtl number, and local Jacob number, is obtained from the experimental results. The bubble history is derived from the newly proposed correlation and the condensate Nusselt number is compared with the previous models.  相似文献   

19.
A simultaneous visualization and measurement study has been carried out to investigate effects of inlet/outlet configurations on flow boiling instabilities in parallel microchannels, having a length of 30 mm and a hydraulic diameter of 186 μm. Three types of inlet/outlet configurations were investigated. Fluid flow entering to and exiting from the microchannels with the Type-A connection was restricted because the inlet and outlet conduits were perpendicular to the microchannels. The fluid flow had no restriction in entering to and existing from the microchannels with the Type-B connection. In the Type-C connection, fluid flow was restricted in entering each microchannel but was not restricted in exiting from the microchannels. It is found that amplitudes of temperature and pressure oscillations in the Type-B connection are much smaller than those in the Type-A connection under the same heat flux and mass flux conditions. On the other hand, nearly steady flow boiling exists in the parallel microchannels with the Type-C connection under the experimental conditions. Therefore, this configuration is recommended for high-heat-flux microchannel applications. As predicted, the stability threshold is determined by the minimum in the pressure-drop-versus-flow-rate curve. The pressure drop and heat transfer coefficient versus vapor quality for flow boiling in microchannels with the Type-C connection are presented. It is found that experimental data of pressure drop are higher and heat transfer coefficients are lower for boiling flow at high vapor quality in microchannels than those predicted from correlation equations for boiling flow in macrochannels, due to local dryout.  相似文献   

20.
We have developed a stabilizer of the temperature of a thermoresistor wire electric heater based on a PID controller. Using this stabilizer, we investigated heat exchange of subcooled water in pool boiling. We found that on stabilization of the heater temperature up to that of the subcooled water, transition from convection to the regime of bubble boiling and vice versa occurs spontaneously and is accompanied by a jumpwise change in heat transfer. It is shown that in the regime of stable bubble boiling, the law of heat transfer is independent of the liquid temperature and the heater diameter and that the maximum heat loading may attain 50 MW/m2, which is much above the values cited earlier in the literature. Based on the results obtained, a mechanism of implementation of bubble boiling for the regimes of a constant heat flux and a constant temperature is suggested. The assumption is made that the regime of heterogeneous vapour generation is possible only in the case of the heater constant temperature. In the regime of a stabilized heat flux on the heater, the spatially inhomogeneous regime of heat transfer is established. This regime represents a spatially distributed combination of three regimes: convective heat transfer, homogeneous boiling, manifesting itself in periodic boiling-up of overheated layers of the liquid near the surface and an unstable regime of heterogeneous vapour generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号