首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To assess the impact of smoke on the ceiling in tunnel fires, the smoke temperature under the ceiling was studied experimentally with small-scale experiments. This study focused on the transverse smoke temperature distribution in road tunnel fires as the longitudinal one has been widely researched. Comparison for the transverse and longitudinal smoke temperature distributions near the fire was conducted and the difference was researched. A correlation determining the transverse smoke temperature distribution under the ceiling was developed by taking the fire location into account.  相似文献   

2.
为研究隧道横向火源位置对隧道顶棚温度沿纵向分布过程的影响,采用数值模拟与全尺寸模型实验相结合的方法,分析3 种火源功率多种横向偏移位置火源燃烧产生的顶棚温升与对应中心火源工况沿隧道纵向不同位置的温度分布特性。结果表明:对于多种横向偏置火源位置,火源所处纵向的顶棚温升衰减仍可用指数形式描述,越靠近隧道侧壁,温升衰减速度越快。火源与横向中心的偏距和纵向距离的耦合影响对温升衰减规律可以用相对独立的公式形式进行描述。火源功率越大,不同偏距火源下影响温升纵向衰减的范围越小。  相似文献   

3.
Twelve tests were conducted to study the distribution of smoke temperature along the tunnel ceiling in the one-dimensional spreading phase, two tests in a large-scale tunnel and the other ten in full scale vehicular tunnels. The fire size and the height above the floor, the tunnel section geometry and longitudinal ventilation velocity varied in these tests. Experimental results showed that when the fire size was larger, the smoke temperature below the ceiling was higher, but it decayed faster while traveling down the tunnel. The longitudinal ventilation velocity seemed to take much influence on the smoke temperature decay speed downstream. A “barrier effect” was shown for the smoke temperature distribution of the upstream back layering. The smoke temperatures measured were higher upstream than downstream before the “barrier”, and were much lower and decreased faster along the tunnel ceiling after the “barrier”. The temperature and the traveling velocity of the upstream smoke flow decreased largely when the longitudinal ventilation velocity increased a bit. The dimensionless excess smoke temperature distributions along the tunnel ceiling in all tests fell into good exponential decay. But the decay speed along the tunnel seemed to be much larger in the large-scale tunnel than that in full-scale tunnels. The measured data on ceiling jet temperature decay along the tunnel was compared with predictions of Delichatsios's model, a model built based on small-scale tests, with hydraulic diameter introduced. Results showed that Delichatsisos’ model over estimated the decay speed of ceiling jet temperature for the downstream flow. However, good agreement was achieved between the measured data and the model predictions for the upstream back layering. All the experimental data presented in this paper can be further applied for verification of numerical models, bench-scale results and building new models on ceiling jet temperature distribution.  相似文献   

4.
Some modifications on Suzuki’s multi-layer zone model (MLZ) have been done to predict temperature and smoke distribution of a tunnel fires, i.e., the radiation heat loss of fire source is taken into account and a four-surface radiation heat transfer model is introduced. Like Suzuki’s model, as a special long and narrow space, the tunnel space is also divided into a number of layers in vertical direction and regions in longitudinal direction. The physical properties like temperature and species (CO, CO2, etc.) are assumed uniform in every zone like two-zone model. However, the different heat transfer model is introduced. The MLZ model prediction is compared with the experiments of USTC and CFD model (FDS). It shows good agreement between the model prediction, experiments and CFD models (FDS). And the MLZ model needs less time than CFD model.  相似文献   

5.
To assess the impact of heat smoke in tunnel with vertical shafts, the maximum temperature of smoke beneath ceiling is researched theoretically and experimentally in this paper. A theoretical prediction model for maximum temperature of smoke beneath ceiling is built using dimensional analysis. A numerical model is built and calibrated with the full-scale experiment data. The calibrated numerical model is used to simulate the maximum temperature of smoke under different conditions with different shaft geometry. At last, the proposed theoretical model was formulated and compared with Kurioka model, experimental data and simulation data. The results show that the proposed theoretical model can give a better prediction for the tendency. It can be used to predict the maximum temperature of smoke beneath ceiling of tunnel with vertical shafts by taking the shaft geometry and arrangements effect into account.  相似文献   

6.
Smoke layer interface height is an important parameter in fire safety science. In this paper, a series of experiments were conducted in a 1/6th scale model tunnel for determining the smoke layer interface height in medium scale tunnel fire scenarios. The commonly used approaches, including visual observation, N-percentage rule and integral method are reviewed firstly. Then, considering the subjectivity and empiricism of previous approaches, a buoyancy frequency method is put forward based on the vertical temperature distribution in tunnel, which has definite physical meaning and eliminates the subjectivity of previous methods. The smoke layer thicknesses determined by buoyancy frequency method are compared with the results of visual observation, N-percentage rule (N = 10, 20, 30) and integral ratio method, respectively. The comparison results reveal that the smoke layer thicknesses determined by buoyancy frequency method fit best with the visual values for all the experimental conditions. While the calculated values by integral ratio method are lower than the visual values. In addition, the selection of optimum N values for the N-percentage rule in different cases is also discussed.  相似文献   

7.
A series of fire tests was conducted in a 10.0 m (L) × 0.75 m (W) × 0.45 m (H) model tunnel with a rectangular cross section, and detailed measurements were taken of the temperature and velocity within a quasi-steady state fire-driven ceiling-jet running along the centre of a ceiling.The ceiling-jet thickness was defined as the distance from the tunnel ceiling to the point where the temperature and/or velocity dropped to half of their maximums. Correlations to represent the variation in the ceiling-jet thickness along the tunnel axis were developed with the aid of a theoretical approach. The coefficients included in these correlations were determined based on the experimental results obtained. It was found that the ceiling-jet thickness derived from the temperature was 1.17 times greater than that from the velocity in the tranquil flow region.In the tranquil region, both the velocity and temperature showed top-hat distributions, with a bulging shape from the apex of the distribution towards the tunnel floor. A cubic function and coordinate transformation were applied to develop empirical formulae for the temperature and velocity distributions, which were represented by the dimensionless distance from the tunnel ceiling and dimensionless temperature rise and/or velocity at a given distance from the fire source. The correlation developed for the temperature distribution was compared with the results of large- and full-scale tunnel experiments, which verified its applicability.  相似文献   

8.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

9.
A series of fire tests was conducted in a small-scale tunnel with dimensions of 10.0 m (L) × 0.75 m (W) × 0.45 m (H) and a rectangular cross-section. Detailed measurements of the velocity and temperature within a steady fire-driven ceiling-jet running along the centre of the ceiling were conducted.Referring to a theoretical derivation process described in the literature as a starting point, correlations representing the velocity and temperature attenuation along the tunnel axis were developed.The values of the coefficients included in the developed correlation for the velocity attenuation were measured using a particle image velocimetry system during the experiments conducted in the small-scale tunnel. The value of the Stanton number was determined by considering the ceiling-jet thickness, which was derived from the velocity distribution. The values of the coefficients included in the developed correlation for the temperature attenuation were also determined based on experimental results described in the literature, which were obtained in a large-scale tunnel constructed using good heat insulation properties.Through these correlations developed for the velocity and temperature attenuations along the tunnel axis, the variation in the Richardson number of the ceiling-jet based on the distance from the fire source position along the tunnel axis was examined, and the position where the ceiling-jet changed from a shooting flow to a tranquil flow was determined. The boundary positions between the shooting and tranquil flows were determined using correlations between the velocity and/or temperature attenuation, which were compared with the variation in the Richardson number along the tunnel axis to verify their appropriateness.  相似文献   

10.
地铁隧道列车火灾的火焰顶棚射流温度特性研究   总被引:3,自引:0,他引:3  
以地铁隧道火灾为研究对象,通过1∶8缩尺模型试验和数值模拟分析夹带火焰的烟气顶棚射流的温度特性,为地铁隧道火灾的防灾减灾提供参考。假定火源位于列车中部,燃烧强度是经过相似变换的等量荷载。火焰直接撞击顶棚并向上、下游扩展。考虑隧道内热辐射效应,得到在不同燃料用量下火焰顶棚射流温度的时变规律与空间分布特征。结果表明:燃料的多少对火焰顶棚射流在燃烧时间内的温度时变曲线的变化趋势影响不大,燃烧达到稳定的时间非常接近,但稳定状态的温度明显不同;火焰区上方顶棚射流烟气的最高温度与燃料液面的高度有关,试验中出现在距隧道顶0.18H处,而不是纯烟气顶棚射流给出的0.01H的区域内;列车上方及列车首尾附近的火焰顶棚射流温度沿隧道纵向呈线性衰减,且衰减速率不随时间变化,而不是纯烟气顶棚射流的指数衰减形式。在一定的高度以下,火焰顶棚射流的温度迅速降低,存在温度较低的安全区域适合于人员疏散。  相似文献   

11.
An important feature for distinguishing tunnel lining structure and structure on the ground is the obvious difference of water content. In order to realize the difference between lining structure temperature characteristic and damage which are caused by different water content, a large-scale model test is carried out in this paper through studying the fire entity engineering in Xinqidaoliang to research the temperature field distribution and damage of road tunnel lining structure under different water content. The result shows that the heating rate and the highest temperature of lining internal surface are closely related to the distance to fire and water content of lining. The farther away from the fire, the slower the heating rate is and the lower the highest temperature becomes; for the sections that are equidistant from the fire, the higher the water content is, the slower the heating rate becomes and the lower the highest temperature on lining surface is. As it is closer to the inner of lining, the time needed to reach the highest temperature increases multiply; for the sections that are equidistant from the fire, the higher the water content is, the lower the highest temperature becomes and the longer the time needed to reach the highest temperature is. Due to the water evaporation inside lining structure, there is a stagnation period on the temperature rising curve. The time of stagnation is relevant to water content of lining, the distance from fire sections and the surface depth. When each part of lining structure is equidistant from the fire, the higher the water content is and the lower the temperature of each part is. Besides, for the lining structure with higher water content, the reduced temperature gradient along the lining thickness is apparently higher, as compared with the one with lower water content. The concrete damage of the tunnel lining structure with higher water content is apparently more serious than the one with lower water content. Though the moisture can reduce the temperature inside the lining, the damage of lining is exacerbated. This research can provide reference for further similar projects.  相似文献   

12.
搭建了1:10的缩尺寸隧道模型,考虑不同火源功率和纵向风速开展了纵向通风下隧道内重石脑油燃烧的试验研究,测量了隧道内顶棚下方纵向温度分布,并量化了火焰的倾斜角度。结果表明:随着纵向通风风速的增加,隧道内温度整体呈降低趋势,顶棚下方最高温度逐渐减小,进而提出了纵向通风下隧道内重石脑油燃烧时顶棚下方最高温度的估算模型。火焰倾斜角度随纵向风速的增加而呈增加趋势。当纵向风速较低(小于1 m/s)时,随着纵向风速的增加火焰倾斜角度明显增大;当纵向风速较大(大于1 m/s)时,纵向风速对火焰倾斜角度的影响不明显。  相似文献   

13.
实体隧道火灾温度分布试验研究   总被引:1,自引:1,他引:0  
建立实体隧道火灾现场试验系统及数据采集系统,通过在岩门界隧道开展的实体隧道火灾试验,测试了不同通风模式、不同火灾工况下隧道火源上、下游不同断面处的温度变化及隧道拱顶的温度变化。试验结果表明,与车行方向相同的1.8m/s机械通风能在一定程度上延缓烟气蔓延;有与车行方向相反的自然风时,火源下游温度较低,最高温度出现在火源上游;有机械通风时,温度随风向、风速而变化。  相似文献   

14.
基于油池火焰蔓延特性,探究了火灾下横隔梁对多肋钢筋混凝土T梁桥温度场的影响。理论分析了T梁底火焰蔓延总长度与热释放速率间的无量纲关系,用FDS建立4种火灾场景的流体计算模型,分析T梁边界温度时空分布规律,将FDS计算结果加载到T梁桥有限元模型上,计算截面内部温度场。结果表明:在开放空间,T梁底火蔓延与无量纲热功率之间的线性比值大于封闭空间的2.58;横隔梁有效降低了火焰邻近区域的温度,在顺桥向将T梁边界温度场分成4个区域,各分区间温度比无横隔梁时分别降低9.7%、41%、56.8%。说明横隔梁限制了热传递,使火源直接作用的梁构件温度梯度梁肋中部提高33%,梁底提高13.3%,翼板底提高5%。  相似文献   

15.
16.
17.
In this study, fire experiments using a 1:20 model-scale tunnel were conducted to investigate the performance of natural ventilation in an underground road tunnel with six vertical shafts. The experimental parameters were the heat release rate of a fire source and the height of the shafts, and nine experiments were conducted in total. Furthermore, simple models were developed for predicting the temperature distribution of the smoke flowing under the tunnel ceiling. The following results were obtained: (1) In the experiments, the form of the smoke exhausted from the shaft became plug-holing when the shaft height was 1.0Ht, and became boundary layer separation when the height was 0.24Ht. (2) The average efficiency of heat exhaust was 0.16 when the form was plug-holing, and was 0.12 when the form was boundary layer separation. (3) When the form was plug-holing, the ratio of entrainment of fresh air became almost constant regardless of Ri. On the other hand, when the form was boundary layer separation, the ratio of entrainment of fresh air was smaller than that under the condition of plug-holing. (4) The temperature distribution under the tunnel ceiling predicted by the models agreed with that measured by the fire experiments in all cases.  相似文献   

18.
通过对海拔为4100m的高海拔隧道进行全尺寸火灾试验,揭示高海拔隧道火灾烟气下沉及温度场变化特征。试验采用三种不同尺寸火源(0.8m2、1.0m2、2.0m2),对隧道火灾烟气蔓延特征、火区最高温度、隧道拱顶纵向温度分布进行研究。试验研究结果表明:隧道火灾试验初期及燃烧稳定阶段,火源附近隧道上层烟气与下层冷空气分界明显,火灾后期烟气下沉严重;较小风速有利于高海拔隧道小规模火灾烟气逆流层纵向和垂向蔓延的控制。隧道火灾温度场研究表明:隧道火灾温升速率随火源热释放率增大而增加;火源附近20m范围内温度衰减速率较快,远火源区域隧道拱顶纵向温度衰减较慢,趋于平缓;通过对火源上方拱顶烟气温度分析,发现隧道火灾探测采用差温报警模式较定温报警模式更加有效,并得出10℃/min的温升速率可基本满足高海拔隧道小规模火灾的初期报警;隧道拱顶纵向温度分布规律导致火源远场烟气下沉严重而近火源区域烟气层化较好的特征。高海拔隧道火灾温度分布特性试验研究,可为高海拔隧道火灾动力特性研究提供依据,为高海拔隧道人员疏散逃生提供指导及建议。  相似文献   

19.
采用雅各布天梯电弧作为火源,通过加热器控制电缆表面温度,构建了电弧引燃110 kV电压等级的交联聚乙烯电缆实验平台,研究了电弧特性、电缆引燃及火焰蔓延过程.其中,电弧的维持电压幅值为3 kV,电流幅值为0.13 A,电弧气体温度为2000 K.保持电弧火源不变,结合电弧引燃电缆实验与火灾动力学模拟结果,发现随着电缆表面...  相似文献   

20.
采用有限元数值分析得出了防火涂料局部破损后钢构件的温度分布规律,提出了临界破损长度的概念。分析了柱长、防火涂料厚度、截面形状系数,以及标准火灾升温时间对防火涂料局部破损后钢构件温度分布的影响。给出了破损长度和其影响区域内温度分布的计算公式,可供结构抗火性能分析和设计参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号